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ABSTRACT OF DISSERTATION 

 
 

THERAPEUTIC POTENTIAL OF TARGETING REACTIVE OXYGEN SPECIES 
(ROS) STRESS IN MYELODYSPLASTIC SYNDROME (MDS) 

Myelodysplastic syndromes (MDS) are a diverse group of clonal 
hematologic disorders characterized by ineffective blood cell production 
(hematopoiesis), dysplastic (abnormal) cell morphology in one or more 
hematopoietic lineages, and progression to acute myeloid leukemia (AML). The 
response rate to current FDA approved therapies is low and not durable. Just 
about 50% of MDS patients respond to these drug therapies and a majority of 
responders relapse within 2-3 years. Hence there is a compelling need to 
investigate new therapy options.  

 We investigated the anticancer potential and possible underlying 
molecular mechanisms of action of a plant-derived compound, Withaferin A 
(WFA) in MDS. We utilized the MDS-L cell line model to test the efficacy of WFA 
both in vitro and in vivo. WFA exhibited potent but selective cytotoxicity to MDS-L 
cells as seen by a dose-dependent decrease in cell viability of these cells when 
treated with WFA whereas WFA had no apparent significant effect on the viability 
of normal primary human bone marrow cells. In addition, WFA significantly 
reduced engraftment of MDS-L cells in a xenotransplantation model. Through the 
use of microarray gene expression analysis, we identified that reactive oxygen 
species (ROS)-activated JNK/AP-1 signaling is a major pathway mediating 
apoptosis of MDS-L cells by WFA. Increase in ROS plays a central role in the 
cytotoxicity of WFA in MDS-L cells. Consistent with the finding that increase in 
ROS plays a central role in mediating WFA cytotoxicity in MDS-L cells, WFA did 
not increase ROS levels in normal bone marrow cells.  

Taken together, these results suggest that pharmacologic manipulation of 
redox biology could be exploited to selectively target malignant cells while 
sparing normal cells in MDS.
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CHAPTER ONE 

INTRODUCTION 

Myelodysplastic syndromes (MDS) are a diverse group of clonal 

hematologic disorders characterized by ineffective blood cell production 

(hematopoiesis), dysplastic (abnormal) cell morphology in one or more 

hematopoietic lineages, and progression to acute myeloid leukemia (AML)1,2. 

Ineffective hematopoiesis leads to peripheral cytopenias such as anemia, 

neutropenia and thrombocytopenia3; anemia being the most commonly 

observed. In fact,  more than 80% of MDS diagnosis are due to anemia-related 

symptoms which can manifest as fatigue, exercise intolerance, dizziness, 

cognitive impairment or an altered sense of well-being3,4. Although less common, 

infection, easy bruising and bleeding are other clinical manifestations of MDS 

that can prompt hematologic evaluation and diagnosis3. The peculiar clinical 

phenotype of anemia in MDS is that it is chronic and  worsens with time4. As a 

result, most MDS patients become transfusion dependent over the course of the 

disease5. Increased number and frequency of transfusions decreases overall 

quality of life and has been associated with a proportional increase in mortality. 

Organ complications from transfusion-related iron overload are thought to be 

related to the observed decrease in overall survival in transfusion dependent 

MDS patients4,5.  
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CLINICAL FEATURES, PATHOGENESIS AND DIAGNOSIS OF MDS 

Characteristic abnormal cell morphologies that can occur in MDS are 

outlined in Table 1.1. MDS diagnosis heavily relies on these characteristic 

morphologic changes3. 

 

The pathogenesis of MDS is not clearly understood but the presence of 

some healthy cells and involvement of both myeloid and lymphoid hematopoietic 
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cell lineages suggest that it is a clonal stem cell disease6. Hematopoietic cell 

hierarchy and lineages are illustrated in Figure 1.1. Observed hematopoietic cell 

defects in MDS span the gamut from reduced (erythrocyte, neutrophil, 

thrombocyte, CD4 T cell and NK cell) or increased (thrombocyte and CD8 T cell) 

numbers to defective function (phagocytosis, bactericidal activity, adhesion and 

chemotaxis of granulocytes, and antibody production by B cells)3.  
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Some recent elegant studies have demonstrated the clonality and stem cell origin 

in MDS by integrating cellular hierarchy and cancer genetics. Mutations 

implicated in MDS occur in the stem cell compartment (founder clones) and new 

mutations are acquired with disease progression to AML (daughter subclones)7,8. 

The malignant cells are clonally derived since all mutations found in founder 

clones were also present in the daughter subclones7,8. These studies suggest 

that like most cancers, MDS pathogenesis involves a stepwise acquisition of 

driver mutations through multiple cycles of mutation. Greater than 90% of MDS 

cases are associated with one or more driver mutations and prognosis 

significantly worsens with increase in driver mutations3,9. Genes involved in DNA 

methylation (DNMT3A, TET2, IDH1/2), chromatin modification (EZH2, ASXL1), 

transcriptional regulation (EVI1, RUNX1, GATA2) and RNA splicing (SF3B1, 

U2AF1, SRSF2 and ZRSR2) are among the most commonly mutated genes9. 

Several cytogenetic abnormalities observed in MDS are outlined in Table 1.2 and 

are abnormalities used for presumptive diagnosis3. 
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MDS is one of the most challenging myeloid neoplasms to diagnose10. 

Heterogeneity in the subtypes of MDS adds a layer of complexity to the 

diagnostic process. The World Health Organization (WHO) classification system 

classifies MDS into 7 subtypes (Table 1.3)10. This classification system is based 

on a combination of morphology, immunophenotype and genetic features of 

peripheral blood and bone marrow, and clinical features10.  
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In addition to the heterogeneity of MDS, differential diagnosis involves exclusion 

of other conditions that may present with cytopenia and/or dysplasia such as 

AML3. AML is of particular interest in the differential diagnosis of MDS because it 

can occur as a continuum of disease with progression of MDS as the distinction 

between the two diseases is largely based on blast percentage10. The WHO 
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recommends 20% blast cells as a cut off between MDS and AML10. MDS 

diagnosis is based on the evaluation of peripheral blood and bone marrow 

smears3. Chromosomal abnormalities play a crucial role in diagnosis as they 

distinguish between MDS and AML and aid in the classification of MDS 

subtypes10. Three main features (Table 1.4) which present in most cases of MDS 

are used as guideline for diagnosis3.  

 

EPIDEMIOLOGY, INCIDENCE AND PROGNOSIS OF MDS 

MDS can occur de novo (classified as primary MDS) or after exposure to 

potentially mutagenic therapy (classified as secondary therapy-related MDS) 11. 

Therapy-related myelodysplastic syndrome (t-MDS) is thought to be a late 

complication that can occur after cytotoxic therapy (chemotherapy, radiotherapy, 

or both) for both malignant and non-malignant disease12-14. Although the 
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mechanism by which exposure to cytotoxic agents causes t-MDS remains 

unknown, t-MDS is a well-recognized clinical syndrome that is included in the 

classification of myeloid neoplasms by the World Health Organization 

(WHO)10,12,14,15. Generally, 10-20% of diagnosed MDS cases are t-MDS16. 

Median latency from the time of initial cytotoxic therapy to t-MDS diagnosis can 

vary from 3 – 7 years13,14,17. MDS is thought to be a disease of the elderly as the 

risk of MDS increases with age18. Reported median age of diagnosis varies by 

study cohort from 65 – 76 years and incidence is slightly significantly higher in 

males3,18-20. Therapy-related MDS on the other hand can occur at any age as 

onset depends on the age of exposure to cytotoxic therapy14,21. Although rare, 

pediatric MDS cases have also been reported22,23.  

The incidence of MDS in the United States is not known but conservative 

estimates suggest at least 30, 000 new cases occur annually18,24.  Several 

studies have demonstrated the actual incidence of MDS is likely higher than is 

predicted from cancer registries24-26. This is in part because MDS only became a 

reportable malignancy in 2001, long after the creation of the National Cancer 

Institute (NCI) cancer surveillance program in 197324,27,28. Moreover, because 

BM evaluation is required for definitive diagnosis, some cases go undiagnosed 

especially in older individuals who usually have other comorbidities24,25. Survival 

of MDS patients is generally very poor. The response rate of current FDA 

approved therapies, azacitidine, decitabine and lenalidomide, is low and often not 

durable. Just about 50% of MDS patients respond to these drug therapies and a 

majority of responders relapse within 2-3 years27,29. A follow up study of 5q MDS 
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patients found that achieving erythroid and cytogenetic responses on 

lenalidomide does not prevent progression to AML30. 

The prognosis of patients who do not respond to azacitidine or decitabine 

is even more abysmal with an overall survival of < 6 months31. Several 

cytogenetic abnormalities are observed in MDS but deletions or complete loss of 

chromosomes 5 and/ or 7 are the most commonly observed11,16. The prognosis 

of patients with complete loss of chromosomes 5 and/ or 7 is significantly 

unfavorable compared to other karyotypes11. It has been recognized for a long 

time that hematopoietic stem cell transplant (HSCT) is the only available 

potentially curative treatment for MDS but the use of HSCT for MDS remains low 

to date, < 10% of MDS patients are referred for HSCT 20,31,32,. A study of 27 t-

MDS cases found that all treatments but HSCT, were not effective for MDS 

resulting in 100% fatality in patients < 55 years17. Although potentially curative, 

HSCT treatment for MDS can fail in certain instances33,34. Several factors, such 

as age and intensive preconditioning regimens could adversely impact the 

success of HSCT for MDS treatment33. One study assessed the impact of age on 

the outcome of HSCT in cancer patients in general. They found a 2.24 fold 

increased risk of treatment related mortality in patients aged ≥ 50 years35. This is 

particularly true for the older patients in whom age and comorbidities limit 

tolerability to intensive preconditioning HSCT treatments31. Given that current 

MDS treatments are mostly ineffective and the high risk of disease-related 

complications especially from anemia, there is an unquestionable need to 

investigate potential alternative therapeutic options for MDS. 
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WITHAFERIN A (WFA) 

Although great advancements have been made in the treatment of cancer, 

toxicity is a major problem with most of the established chemotherapy drugs 

routinely used for cancer treatment36. It is strongly believed that the use of plant 

derived compounds for cancer treatment could reduce adverse side effects 

because they are natural36-38. Withaferin A (WFA) is a plant-derived compound 

that has been shown to have potential in anticancer treatment39. It is one of the 

most bioactive steroidal lactones (Figure 1.2) isolated from the winter cherry 

plant, Withania somnifera40. Withania somnifera, also known as “Indian Ginseng” 

or “Indian Winter cherry” has been used in herbal formulations for centuries in 

Ayurvedic medicine for a wide range of ailments such as chronic fatigue, 

dehydration and rheumatism41,42. Ayurvedic medicine is a traditional healthcare 

system which originated from India more than 3, 000 years ago that uses a 

variety of herbal compounds, special diets, exercise and lifestyle 

recommendations43. WFA exhibits anticancer effects by targeting several 

processes known to promote cancer. Studies have demonstrated that WFA can 

inhibit cell proliferation, angiogenesis, metastasis, inflammation, and induce 

apoptosis in cancer model systems41,44. The therapeutic potential of WFA in 

cancer is illustrated by the fact that it has been shown to have anticancer effects 

in several cancers including prostate, breast, cervical and pancreatic cancers, as 

well as melanoma and lymphoma44,45. Although anticancer activities of WFA 

have been studied in several systems, the molecular mechanisms underlying 

these activities are not completely understood. In silico analysis identified 
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vimentin, IKKγ and Cdc37 as possible direct molecular targets of WFA41. Direct 

interactions of vimentin and IKKβ with WFA have been demonstrated46,47. There 

is also strong evidence suggesting WFA directly binds to heat shock protein 90 

(Hsp90), a molecular chaperone which mediates the folding, assembly and 

maturation of client proteins such as the pro-survival protein AKT48. WFA 

regulates the activity of several transcription factors and kinases but it is not 

known if this regulation is by direct or indirect mechanisms41,44. WFA has also 

been shown to inhibit complex III activity in mitochondria but it was not 

investigated if a direct interaction occurred between the two molecules49.  It is 

now clear that WFA can target multiple pathways and the pathways targeted 

could be cell type specific44,50. Therefore, the critical pathway for each system 

would need to be determined systematically. Some commonly reported 

mechanisms by which WFA inhibits proliferation and/ or induces apoptosis of 

cancer cells include induction of cell cycle arrest 45,51-57, inhibition of NF-κB 45,58-

63, and increased production of reactive oxygen species (ROS)49,62-66.  
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REACTIVE OXYGEN SPECIES (ROS) 

ROS are a heterogeneous group of oxygen-containing species with highly 

reactive chemical properties67,68. ROS exist in two flavors; radicals which contain 

one or more unpaired electron(s), and non-radical species which are equally 

reactive but lack unpaired electron (s) and can be converted to radical species68. 

Examples of radical and non-radical ROS commonly seen in biological systems 

are listed in Table 1.569. There are both exogenous and endogenous sources of 

ROS. Some exogenous sources of ROS include γ-irradiation, UV irradiation, 

ultrasound, food, drugs, pollutants (e.g. car exhaust, cigarette smoke and 

industrial contaminants), xenobiotics, and toxins69. There are multiple 

mechanisms by which cells produce ROS endogenously. Electron leakage from 

the mitochondrial respiratory chain is a major source of endogenous ROS 
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production68,70. ROS can also be produced as a by-product of certain enzymatic 

reactions such as, catabolism of purines, fatty acid peroxidation, prostaglandin 

synthesis and detoxification reactions by cytochrome P45068,70. Some enzymes 

are direct producers of ROS such as nitric oxide synthase which produces nitric 

oxide (NO.)69. Phagocytic cells activated by recognition of an antigen undergo a 

series of reactions called the respiratory burst that is catalyzed by nicotinamide 

adenine dinucleotide phosphate-oxidase (NADPH-oxidase), which is another 

source of endogenous ROS production71.  
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EFFECTS OF ROS 

Given that ROS are chemically reactive, they can react with cellular 

components such as lipids, proteins, carbohydrates and nucleic acids to cause 

tissue damage69,70. The antioxidant defense system has evolved to counteract 

the damaging effects of ROS in body tissues72. Antioxidants act by direct and 



www.manaraa.com

15 
 

indirect mechanisms to terminate oxidative chain reactions by deactivating 

already formed ROS and by preventing ROS generation73. The antioxidant 

defense system consists of both enzymatic and non-enzymatic molecules72. 

Enzymatic antioxidants include superoxide dismutase (SOD), catalase (CAT), 

and glutathione peroxidase (GPx)70,72. Ascorbic acid (Vitamin C), α-tocopherol 

(Vitamin E), carotenoids, flavonoids, uric acid, coenzyme Q, lipoic acid, and 

glutathione (GSH) are some non-enzymatic antioxidants known to play key roles 

in antioxidant defense mechanisms70,72. GSH, a tripeptide of glutamine, cysteine 

and glycine, is ubiquitously expressed in all mammalian tissues and is thought to 

be the principal non-enzymatic antioxidant involved in antioxidant cellular 

defense74. The importance of glutathione in redox metabolism is owed to its 

ability to perform multiple roles including: GSH directly scavenges free radicals 

and acts as a substrate for GPx during the detoxification of hydrogen peroxide 

and lipid peroxides; GSH is a co-factor of several enzymatic antioxidants; GSH is 

able to regenerate the active forms of non-enzymatic antioxidants, Vitamins C 

and E70,75. Reduced glutathione (GSH) is converted to glutathione disulfide 

(GSSG-oxidized glutathione) in oxidative stress74. Since glutathione is the major 

redox buffer of the cell, the relative amount of the reduced and oxidized forms 

(GSH/GSSG) is a good measure of oxidative stress or the redox state of an 

organism74,76.  

Paradoxically, physiological redox homeostasis favors mild oxidative 

stress because ROS have some useful roles77. This means that the antioxidant 

defense must minimize ROS damage while allowing the useful effects of 
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ROS72,78. ROS have a critical role in the immune response against pathogens; 

directly causing oxidative damage to phagocytosed pathogens or indirectly by 

activating a variety of innate and adaptive mechanisms for pathogen 

elimination79. Studies have shown that ROS are also important anti-inflammatory 

and immunoregulatory molecules80. ROS can regulate signal transduction 

pathways by activating kinases81 and transcription factors68,82, and by modulation 

of intracellular calcium levels83. Redox signaling is integrated into a variety of 

cellular processes such as: DNA damage response; antioxidant and anti-

inflammatory responses; regulation of iron homeostasis; cell differentiation, 

metabolism and migration; cell proliferation; and apoptosis68,81,84.  

ROS AND CELL CYCLE PROGRESSION 

There is overwhelming evidence suggesting that cell cycle progression 

and therefore cell proliferation is subject to redox control85,86. It is now 

appreciated that the effect of ROS on cell cycle progression is influenced by 

multiple factors. The type, amount and location of ROS production, duration of 

ROS exposure, and the presence or absence of other proteins like cell division 

cycle 25 (Cdc25), are examples of factors that affect redox signaling on cell 

cycle85,87. Cyclin dependent kinases (Cdks), cyclins and Cdk inhibitors cooperate 

to ensure a precise and orderly progression through the cell cycle88. Hence, ROS 

impacts cell cycle progression by regulating the activity and expression of these 

cell cycle regulators via phosphorylation, ubiquitination and other protein 

modification events85,87,89. ROS mediated regulation of cell cycle progression is 

very complex but induction of the Cdk inhibitor p21, seems to have a crucial 
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role85. Increased p21 expression causes cell cycle arrest90. ROS can induce p53-

independent expression of p21 through redox sensitive transcription factors like 

activator protein-1 (AP-1) and specificity protein 1 (Sp1)85. Alternatively, ROS-

induced DNA damage can lead to increased p53 activity which in turn induces 

p21 expression85,90. Expression of p21 plays a unique role in redox-regulated cell 

proliferation because temporal expression allows for DNA damage repair by cell 

cycle arrest and resumption of proliferation once redox homeostasis is achieved 

and p21 levels are normalized. However, prolonged ROS production sustains 

p21 expression and cells eventually undergo apoptosis85. In fact, p21 has been 

shown to be involved in the transcriptional repression of several cell cycle genes 

including cyclins and Cdks91. 

ROS AND JNK-MEDIATED APOPTOTIC SIGNALAING 

c-Jun N-terminal Kinases (JNKs) are a subfamily of the mitogen-activated 

protein kinase (MAPK) superfamily comprised of three well-characterized 

members: extracellular signal-regulated kinases (ERKs), p38 MAPKs, and 

JNKs92. MAPKs regulate cellular responses to external stimuli and cellular 

processes including cell proliferation, differentiation, and apoptosis92,93.  MAPKs 

mediate most of the signal transduction in eukaryotic cells by modulating the 

activity, degradation, subcellular localization, and protein interactions of their 

target proteins via phosphorylation94. MAPKs are activated via a three-tier 

signaling cascade module in which a MAPK kinase kinase (MAP3K) activates a 

MAPK kinase (MAP2K) that in turn activates a MAPK92. JNKs are at the last tier 

of this signaling module. 
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  JNKs are encoded by three distinct genes, two of which are ubiquitously 

expressed (JNK1 and JNK2) and JNK3, whose expression is restricted to the 

heart, brain and testes95,96. All three genes are alternatively spliced into ten 

variants from which both 46kDa and 54kDa isoforms are derived96. MKK4 and 

MKK7 are two MAP2Ks known to directly phosphorylate JNKs93,95,97. Unlike 

MKK4 which can activate JNK and p38 MAPK, MKK7 is highly specific to JNK 

activation98. At least twelve MAP3Ks have been observed to be involved in MKK4 

and MKK7 activation, including the ROS sensitive MAP3K, apoptosis signal-

regulating kinase 1 (ASK1)81,99.The first target of active JNKs identified was c-

Jun, hence their naming100. c-Jun is a subunit of the AP-1 family of transcription 

factors that consists of homodimers and heterodimers of Jun (c-Jun, JunB, 

JunD), Fos (c-Fos, FosB, Fra-1, Fra-2) or activating transcription factor 2 (ATF2) 

proteins101. Active JNKs activate c-Jun by phosphorylating serines 63 and/or 73 

in the amino terminal A1 transactivation domain102,103. It is now recognized that 

JNKs can modulate the activity of a myriad of proteins ( both nuclear proteins, 

most of which are transcription factors, and non-nuclear proteins) positively or 

negatively by phosphorylation100. c-Jun, ATF2, Elk-1, c-Myc, p53, FOXO4, 

STAT3 and PAX2 are examples of nuclear proteins positively regulated by JNKs 

while HSF1, PPARγ1, Nur77, TIF1A, NFATc3 and Androgen R are some of the 

nuclear proteins inhibited by JNKs100. Some non-nuclear proteins activated by 

JNKs are Bim, Bax, MK1, Bcl-2 and Itch, while Bcl-XL, IRS-1, Bcl2, Tau and 

kinesin - are examples of non-nuclear proteins that have been shown to be 

inhibited by JNKs100. Several cellular responses; morphogenesis, metabolism, 
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motility, DNA repair cell differentiation, cell proliferation, cell survival, and cell 

death, are controlled by these JNK substrates104,105. Hence not surprisingly, 

JNKs are implicated in a number of diseases including cancer104,105. Since the 

cellular response to JNK activation is cell type and context dependent93,106, it can 

either promote or inhibit disease states105,107. 

It is well known that ROS-induced activation of JNKs via the redox 

sensitive MAP3K, ASK1, leads to cellular apoptosis93,108. The thioredoxin 

(Trx)/ASK1 complex functions as the redox switch of ROS-induced ASK1/JNK 

apoptosis signaling108. Homophilic interaction of ASK1 mediated by the N-

terminal coiled coil (NCC) domain is required for activation of the ASK1109. The 

reduced form of Trx but never the oxidized form is found in complex with 

ASK1110. Binding of Trx to the N-terminal Trx-binding region of ASK1 inhibits its 

NCC domain-mediated homophilic interactions and therefore its activation109,110. 

Increase in ROS levels results in oxidation of Trx which dissociates from the 

Trx/ASK1 complex, enabling ASK1 activation109,110 (Figure 1.3). Active ASK1 

phosphorylates and activates JNKs which regulate apoptosis by nuclear and 

mitochondrial signaling events93. Activated nuclear JNK promotes AP-1 mediated 

expression of pro-apoptotic proteins like BIM111,112 and Fas-ligand (Fas-L)113. 

Active JNK on the other hand can translocate to mitochondria where it directly 

activates the mitochondrial apoptosis machinery in the absence of new protein 

synthesis114. Phosphorylation of mitochondrial proteins such as Bcl2 and Bcl-xL 

and decreased mitochondrial membrane permeability by active JNK have been 

reported to induce mitochondrial apoptosis114,115. 
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ROS IN CANCER 

Evidence suggests the malignant cells in most cancers including MDS, 

have increased levels of ROS compared to their normal counterparts116-119. A 

delicate balance of ROS levels is essential for normal cell growth and survival 

since a moderate increase ROS can promote cell proliferation while excessively 

high concentrations of ROS lead to cell death85. Since cancer cells are already in 

a state of increased oxidative stress, they could be more susceptible to agents 

that further increase ROS generation67,116. Hence, manipulation of ROS levels 

could be a means to selectively target cancer cells while sparing normal cells 

68,116. Indeed there have been several reports demonstrating the selective 

therapeutic potential of some agents by increased ROS production119-123. 

Modulation of ROS homeostasis has been extensively exploited for AML therapy 
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in the past decade124 but this therapeutic strategy has not been exploited for the 

closely related disease, MDS. The implication of increased oxidative stress in the 

development and prognosis of MDS118 suggests ROS producing agents such as 

WFA could have therapeutic value in MDS.  

STUDY MODEL AND OBJECTIVES 

There is no widely accepted animal model that completely recapitulates 

clinical features of MDS. Engraftment of primary MDS cells into 

immunocompromised mice is poor and highly inefficient125,126. We therefore used 

the human MDS-L cell line, a subline of MDS92127 for this study. The MDS92 cell 

line was derived from the bone marrow of an MDS patient128 and was described 

by an independent group of investigators as the “chosen one” of the 31 cell lines 

investigated129. MDS-L cells have deletions in chromosomes 5 and 7127, the most 

common cytogenetic abnormalities observed in MDS which have also been 

associated with significantly worse prognosis12,14,16,17. Moreover, MDS-L cells 

successfully engraft and induce reproducible disease in NOD/SCID-IL2Rᵧ (NSG) 

and NSG-hSCF/hGM-CSF/hIL3 (NSGS) mice130.   

As discussed above, the prognosis of MDS patients is generally very poor 

but the treatment options for these patients are very limited. The anticancer 

potential of the plant derived-compound, WFA has been demonstrated in several 

cancer models including prostate, breast, cervical and pancreatic cancers, as 

well as melanoma and lymphoma44,45. In this study, we utilized the MDS-L model 
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of MDS to investigate the anticancer potential of WFA in MDS by addressing the 

following specific aims: 

1. Determine the in vitro and in vivo effects of WFA on MDS-L cells and primary 

bone marrow cells from MDS and AML patients. 

2. Elucidate the mechanisms of action of WFA in this MDS model. 
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CHAPTER 2 

MATERIALS & METHODS 

2a) Cell Culture 

MDS-L cells (a generous gift from Dr. Kaoru Tohyama, Department of 

Laboratory Medicine, Kawasaki Medical School, Japan) were maintained in 

IMDM/F-12 (50:50) medium supplemented with 12% fetal bovine serum (Atlanta 

Biologicals), 0.005mg/ml apotransferrin, 50 µM 2-mercaptoethanol (2-ME) and 20 

ng/ml of human IL-3 (PeproTech). KG-1 cells (kindly provided by Dr. Ying Liang, 

Department of Toxicology and Cancer Biology, University of Kentucky, USA) 

were cultured in IMDM medium supplemented with 10% fetal bovine serum. KG1 

is a human AML cell line. IRB protocol # 88-00241 permitted acquisition of 

human primary cells. Normal human primary bone marrow cells were courtesy of 

Dr. Ahmed Abdel-Latif at the University of Kentucky. Bone marrow mononuclear 

cells were isolated by Ficoll-paqueTM plus (GE Healthcare) and maintained in 

RPMI medium supplemented with 50 µM 2-mercaptoethanol, 1 µM sodium 

pyruvate and 10% fetal bovine serum (FBS). MDS/AML samples were obtained 

from Leukemia Tissue Bank of the Ohio State University Comprehensive Cancer 

Center (OSU CCC). MDS/AML cells were thawed and maintained in RPMI 

medium supplemented with 10% fetal bovine serum and 10 ng/ml hIL-3, GM-

CSF and stem cell factor (R&D Systems). All media were purchased from Gibco-

Life Techonologies.  
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2b) Reagents 

WFA was isolated from Withania somnifera extract (Sabinsa Corp) using a 

series of solvent extractions and silica gel-based vacuum liquid column 

chromatography at the University of Louisville and at the laboratory of Dr. I. P. 

Singh, National Institute of Pharmaceutical Education Research (NIPER), India. 

The purity was found to be >94% by UPLC. WFA was reconstituted in dimethyl 

sulfoxide (DMSO). Biotin conjugated rat anti-CD45R/B220 (553086), anti-CD11b 

(553309), anti-Gr-1 (553125), anti-CD8a (5532029), anti-Ter-119 (553672), anti-

CD5 (553019); streptavidin APC CY7 (554063) and anti c-KIT-APC (553356) 

were purchased from BD Pharmingen (San Diego, CA). Anti-Sca-1-PB (122520) 

was purchased from BioLegend (San Diego, CA). Cremophor (C5135), Carbonyl 

cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) (C2920), hydrogen 

peroxide (H2O2) (H1009), Phorbol 12-myristate 13-acetate (PMA) (P1585), N-

acetyl-cysteine (NAC) (A8199), SP600125 (S5567), JNK-IN-8 (SML-1246), JC-1 

(T4069), RNase A (R6513), Hepes solution (H0887), ethylenediaminetetraacetic 

acid (EDTA) solution (E7889), dimethyl sulfoxide (D2438) and monoclonal anti-β-

actin (A5441) were purchased from MilliporeSigma-Aldrich (St. Louis, MO). 

Antibodies to P-p38 (9211S), total p38 (9212), cleaved caspase-3 (9661S), total 

caspase-3 (9665S), P-MKK7 (4171S), P-c-Jun (9261S), total c-Jun (9162), CDK2 

(2546P), cyclin A (4656P), CDK1 (9116), cyclin B (4135) and GAPDH (2118S) 

were obtained from Cell Signaling Technology (Danvers, Massachusetts). Anti-

total MKK7 was purchased from Zymed (32-7000). Antibodies to RGS2 

(100761), Hdac1 (7872), P-JNK (6254) and total JNK (571) were obtained from 

https://en.wikipedia.org/wiki/Danvers,_Massachusetts
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Santa Cruz Biotechnology (Santa Cruz, CA). Peroxidase coupled goat anti-rabbit 

(SC-2004) and anti-mouse (SC-2005) Ig secondary antibodies were also 

acquired from Santa Cruz Biotechnology (Santa Cruz, CA). 1X phosphate 

buffered saline (16750-078) was obtained from VWR (Radnor, PA). 

2c) MTT and Trypan Blue Dye Exclusion Cell Viability Assays 

MDS-L cells were treated with increasing concentrations of WFA (0 – 20 

µM) in 96 well flat-bottom microtiter plates for 48 h in 0.2 ml of media. Cells were 

cultured in quadruplicates. Treated cells were incubated with 0.5 mg/ml MTT (3-

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye (Sigma Aldrich) 

for 4 h followed by solubilization of formazan salt with acidic isopropanol and 

spectrophotometric measurements at 560 nm and 690 nm. Optical density 

variation was corrected by subtracting OD 690 from OD 560 nm values. Media 

background was subtracted from all treatment groups and a DMSO control group 

was included in each experiment. For trypan blue exclusion, MDS-L cells were 

treated with increasing concentrations of WFA (0 – 20 µM) in 0.5 ml of media per 

well of 24 well flat-bottom plates for 48 h and cell viability was assessed by 

counting live cells by trypan blue exlusion. 

2d) Effect of WFA on MDS-L Engraftment in vivo 

Animal studies were conducted under an approved protocol by the 

Institutional Animal Care and Use Committee (IACUC) at the University of 

Kentucky (Protocol # 2011-0904). NOD/SCID-IL2Rᵧ-hSCF/hGM-CSF/hIL3 

(NSGS) breeding pairs were obtained from The Jackson Laboratories (Bar 
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Harbor, ME) and bred at the University of Kentucky’s Division of Laboratory 

Animal Resources (DLAR) AAALAC certified animal facility. Animals had free 

access to food and water, and were housed at constant temperature with a 12 

hour light–dark cycle. 6 -7 month old male and female littermates were exposed 

to 2.5Gy irradiation (IR) in a Mark I-68 137Cesium γ-irradiator (J.L Shepherd and 

Associates) on a rotating platform, as a pre-conditioning regimen for bone 

marrow engraftment. Four hours after irradiation, mice were engrafted by 

intravenous tail vein injection with MDS-L cells (1 Х 106 cells in 100 µl/mouse).  

Mice were treated from day 14 with 8 mg/kg of WFA IP 5X a week for 6 

weeks. Control mice received vehicle (10% DMSO, 20% Cremophor-Ethanol 

(1:3), 70% phosphate buffered saline (PBS)). MDS-L engraftment was assessed 

by the percentage of human CD45+/CD33+ double positive cells in the bone 

marrow compartment since MDS-L cells are positive for these markers. Tibiae 

and femora were harvested from mice and the bones were flushed with a 26G 

syringe in HBSS containing 2% fetal bovine serum to obtain bone marrow cells. 

The cells were washed and suspended in fluorescence activated cell sorter 

(FACS) buffer (1X phosphate buffered saline without calcium or magnesium, 

supplemented with 25mM Hepes, 5mM EDTA and 1% FBS). 2 × 106 cells were 

stained with anti-mouse CD45-APC, anti-human CD45-PE and anti-human 

CD33-PE for 1 h at 4°C in the dark. Positively stained cells were detected by the 

BD LSRII flow cytometer and the data was analyzed by the FlowJo (Ashland, 

OR) single cell analysis software. Anti-human CD45-PE (12-9459-42) and CD33-
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FITC (11-0339-42) were purchased from eBioscience (San Diego, CA). Anti-

mouse CD45-APC was obtained from BioLegend (San Diego, CA). 

2e) Staining and identification of bone marrow stem cells 

Bone marrow cells were incubated with normal rat IgG (10 µg/1 × 106 

cells) at 4 °C for 15 min to block Fcγ receptors and then labeled with biotin 

coupled rat anti-mouse lineage specific antibodies to CD11b (Mac-1), B220, Gr-

1, CD8α, Ter-119 and CD5. The cells were stained with c-KIT-APC, Sca-1-PB 

and streptavidin APC CY7 antibodies for 30 min at 4°C in the dark and washed 

with 1X FACS buffer. Positively stained cells were detected on the BD LSRII flow 

cytometer and data was analyzed by the BD CellQuest™ Pro software. Lineage 

negative cells which were double positive for both Sca-1 (stem cell antigen-1) 

and c-KIT (LSK) were identified as stem cells. 

2f) Annexin-V Apoptosis Assay 

The annexin-V apoptosis detection kit (A432) from Leinco Technologies 

(St. Louis, MO) was used for annexin-V assays. Thawed human primary 

MDS/AML cells were maintained in culture for 24 h and then treated with 

increasing concentration of WFA for 24 h. Treated cells were stained with 

annexin-V-FITC and PI following the manufacturer’s protocol. Data was acquired 

with the Becton-Dickinson FACSCalibur flow cytometer and analyzed by the BD 

CellQuest™ Pro software (San Jose, CA). For MDS-L cells, 7.5 X 105 cells/ml 

were treated with increasing WFA concentrations for 48 h before staining. In the 

case of JNK or ROS inhibition studies, 7.5 X 105 MDS-L cells/ml after a 4 h JNK-
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IN-8 (10 µM) or NAC (25 mM) pretreatment, or no pretreatment were treated with 

WFA (10 µM) for 24 h and stained with annexin-V/PI. Stained MDS-L cells were 

detected by the BD LSRII flow cytometer and BD CellQuest™ Pro software was 

used for data analyses. 

2g) NF-κB Nuclear Translocation by Immunocytofluorescence 

MDS-L cells (5 X 106) were incubated with WFA (10 µM) or DMSO for 4 h. 

The cells were fixed with 70% ethanol for 1 h, blocked for 1 h in 10% normal goat 

serum and stained with 1:200 dilution of NF-κB p65 primary antibody (Santa 

Cruz-372) overnight at 4 0C. Cells were washed and stained with 1:200 DyLight 

488 conjugated AffiniPure F(ab')2 goat anti-rabbit secondary antibody (Jackson 

Immunoresearch #111–486–046) for 1 h in the dark. After 1X wash with FACS 

buffer, the cells were again stained 1:4000 DAPI (Life Technologies, #D1306) for 

15 min at room temperature. ProlongR Gold Anti-Fade Reagent (Life 

Technologies, #P36930) was used to mount the cells after washing following 

DAPI staining. Slides were viewed and pictures taken on a FV1000 v1.5 confocal 

microscope (Olympus, Shinjuku, Tokyo, Japan). 

2h) Immunoblotting 

MDS-L cells (7.5 X 105 cells/ml) were cultured with 10 µM WFA or DMSO 

for different time points. Cells were lysed in Cell Signaling lysis buffer (#9803) 

containing 1mM PMSF (Sigma P7626), 2mM  NaF (Sigma S-1504), 2mM 

Na3VO4 (Sigma S-6508) and 1x protease inhibitor cocktail (Roche 5892953001). 

To obtain nuclear and cytoplasmic lysates, the cell pellets were lysed following 
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the Thermo Scientific Nuclear and Cytoplasmic Extraction kit (#78833) manual. 

Protein concentration in cell lysates was estimated by the Bicinchoninic Acid 

(BCA) assay kit (Thermo Scientific #23227). Protein lysates were diluted in 4x 

sodium dodecyl sulfate (SDS) sample buffer (100mM Tris-HCl, pH 6.8, 30% 

glycerol, 4% SDS, 5% 2-ME and 0.01% W/V bromophenol blue) to a 1x final 

concentration and boiled for 10 min. 35 µg total protein/sample of total lysate was 

subjected to SDS polyacrylamide gel electrophoresis. 10 µl of Precision Plus 

ProteinTM dual color ladder (BIO-RAD #1610394) with a size range spanning10-

250 kDa was used as a size standard for every gel. The BIO-RAD Mini 

PROTEAN Tetra System was used for both gel electrophoresis and transfer. 12, 

10 or 9% polyacrylamide gels were run with running buffer (25 mM Tris, 192 mM 

glycine, 0.1% SDS, pH 8.3) at 90 V and 3 A for 10 min to stack the proteins, and 

later at 140 V and 3 A for 1 h to separate the proteins. Separated proteins were 

transferred to polyvinylidene difluoride membranes (EMD Millipore IPVH00010) 

with transfer buffer (25 mM Tris, 192 mM glycine, 20% methanol, pH 8.3). 

Transfer was performed at 90 V and 300 mA for 1.5 h at 40C. Membranes were 

blocked at room temperature for 1 h with 5% milk or bovine serum albumin (when 

probing for phosphorylated proteins) in 1x TBST that was diluted from 10x TBST 

(0.5 M Tris, 1.5 M NaCl and 1% Tween-20). The membranes were then probed 

with appropriate primary antibodies at 40C overnight, followed by horseradish 

peroxidase-conjugated secondary antibodies at room temperature for 1 h. 

Membranes were washed 7X with 1x TBST after primary or secondary antibody 

incubations. The blots were developed with HyGLO chemiluminescence reagent 
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(Denville Scientific #E2400) and exposed to HyBlot CL autoradiography film 

(Denville Scientific #E3012), which were scanned with a flat-bed scanner (UMAX 

Technologies, Hsinchu, Taiwan). When comparing two blots, both gels were run 

side by side and the blots were developed on the same film. Band densitometry 

analysis was performed using the NIH ImageJ program. Protein expression was 

normalized to GAPDH, β-actin or total target protein expression as appropriate.  

2i) Affymetrix Microarray Analysis 

Gene expression profile of MDS-L cells was examined in triplicate 

samples. 10 X 106 MDS-L cells were treated with WFA (10 µM) or DMSO for 6 h 

or 12 h at 370C in a CO2 incubator. Total RNA was extracted using the Direct-

zolTM RNA miniprep kit (Zymo Research #R2051) according to the 

manufacturer’s instructions. The Agilent RNA 6000 Nano assay kit (#5067-1511) 

was used to assess RNA purity on the Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA). RNA integrity number (RIN) was ≥ 9 for all 

samples. WT Plus Reagent kit (Affymetrix, Santa Clara,CA), was used to 

generate amplified and biotinylated sense-strand DNA (ss-cDNA) from 100 ng 

total RNA per sample. 30 µg of fragmented biotin-labelled ss-cDNA was 

hybridized to Affymetrix human gene 2.0 ST arrays at 45 0C and 60 rpm for 16 h. 

The arrays were washed and stained using Affymetrix fluidics station FS 450 and 

scanned using the Affymetrix 7G GeneChip Scanner. Data was collected using 

the Affymetrix Command Software. The raw microarray data files were 

processed through Oligo [Doi:10.1093/bioinformatics/btq431] for data extraction 

and normalization. Differential expression analyses comparing WFA-treated 
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groups and the control group were performed by limma 

[DOI:10.1093/nar/gkv007]. Significantly up/downregulated genes were 

determined as fold change > 3 and q-value < 0.05, where q-value is a p-value 

corrected for multiple testing. The functional analyses were performed through 

QIAGEN’s Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City, 

www.qiagen.com/ingenuity). The heat map was used to demonstrate the 

expression of differentially expressed genes, where genes belonging to the top 

15 enriched diseases and function categories from IPA were highlighted. The 

gene set enrichment analysis was performed using GSEA software and the 

Hallmark gene sets in the Molecular Signature Database (MSigDB)131 

[http://www.broad.mit.edu/gsea/]. 

2j) Quantitative Real-Time PCR (qRT-PCR) 

Total RNA was extracted from BM-MNCs using TRIzolR reagent 

(LifeTechnologies #15596-018) according to the manufacturer’s instructions. 

cDNA was synthesized from 500 ng of total RNA with qScript reverse 

transcriptase (Quanta Biosciences #95048-100) using random and oligo(dT) 

primers as per manufacturer’s protocol. The CFX96™ Real-Time C1000 Touch 

thermal cycler system (BIO-RAD, Hercules, California) was used with the iTaqTM 

universal SYBRR green fluorescent supermix (Biorad #172-5121) to quantify 

mRNA expression. RNA polymerase II was used as an internal control. BIO-RAD 

CFX Manager software was used to perform relative quantification of target 

genes using the comparative CT (ΔΔCT) method. Specificity of PCR reactions 

was confirmed by melting curves. The primer sequences used are described in 
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Table 2.1. Primers were designed on NCBI/Primer-Blast using the default 

parameters with the following modifications; primer must span exon-exon 

junction, primer must have at least 6 total mismatches to unintended targets and 

ignore targets that have one or more mismatches to the primer. Primers were 

obtained from Integrated DNA Technologies (IDT, Coralville, Iowa). 
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2k) Mitochondrial Membrane Potential by JC-1 

MDS-L cells (7.5 X 105 cells/ml) were exposed to WFA (10 µM) or DMSO 

for 8 h. Cells treated with 50 µM of the proton translocator, FCCP for 2 h were 

used as a positive control. JC-1 was added at a 1 µM final concentration to cells 

for the last 30 min of treatment at 37 0C. The cells were washed, suspended in 

PBS and fluorescence was measured using the iCyt Synergy sorter system 

(Sony Biotechnology Inc., San Jose, CA). We used the 488 and 561 nm lasers 

because the 561 nm laser efficiently excites J-aggregates but does not excite JC-

1 monomers132. This ensured optimal discrimination of the JC-1 monomers from 

the aggregates. The WinList 3d 8.0 software (Verity Software House Inc., 

Topsham, Maine) was used for data analyses. 

2l) ROS Measurement 

Cell permeant 6-Carboxy-2',7'-Dichlorodihydrofluorescein Diacetate 

(Carboxy-H2DCFDA) (ThermoFisher Scientific #C400), was used as an indicator 

for intracellular ROS measurement. MDS-L cells were treated with DMSO, WFA 

(10 µM) or H2O2 (1mM) for 30 min at 37 0C. Alternatively, cells were treated with 

N-acetyl-cysteine (NAC) (25 or 50 mM) for 4 h followed by DMSO, WFA (10 µM) 

or H2O2 (1mM) for additional 30 min at 37 0C. Treated cells were washed with 

warm 1X PBS and suspended in warm H2DCFDA solution (1.25 µg/ml in PBS). 

The cells were incubated in the dark at 37 0C for 20 min. Fluorescence was 

detected on the BD LSR II flow cytometer and the BD CellQuest™ Pro software 

was used for data analyses. The oxidized form of DCFDA, 5-(and-6)-Carboxy-



www.manaraa.com

34 
 

2',7'-Dichlorofluorescein Diacetate (Carboxy-DCFDA (ThermoFisher Scientific 

#C369), was used as a control for uptake, cellular esterase activity and decay. 

2m) AP-1 Luciferase Assay 

AP-1 pGL3 promoter luciferase and empty vectors were kindly provided by 

Dr. Sanjit Dhar, Department of Toxicology and Cancer Biology, University of 

Kentucky, USA. The Tk-renilla luciferase vector was a generous gift from the 

laboratory of Dr. Martha Peterson, Department of Microbiology, Immunology and 

Molecular Genetics, University of Kentucky, USA. MDS-L cells were transfected 

by electroporation. 2.5 X 106 cells were co-transfected with 20 µg of Tk Renilla 

luciferase vector and 40 µg of firefly luciferase vector (AP-1 or empty vector) at 

250 mV, 960 µF and 200 Ω in 200 µl of MDS-L culture medium with a Gene 

Pulser electroporator (BIO-RAD, Hercules, CA). Transfected cells were cultured 

in MDS-L culture medium for 24 h at 8.5 X 105 cells per well in 6 well flat bottom 

plates (Corning #353224). 24 h after transfection, 1 X 105 cells per well were 

treated with 10 µM WFA or 30 ng/ml phorbol 12-myristate-13-acetate (PMA) for 

12 h in white 96 well flat bottom polystyrene plates (Corning #3917, Corning 

Incorporated Inc, Durham, NC). Alternatively, cells were pretreated with NAC 

(25mM) for 4 h before WFA treatment for an additional 12 h. Promoter activity 

was assessed by the Dual-Glo® Luciferase assay system (Promega #E2920, 

Promega Corporation, Madison, WI). Luminescence was measured using the 

GloMax® Explorer luminometer (Promega). Media background luminescence 

was subtracted and the ratio of firefly to renilla luminescence was calculated. 
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2n) Cell Cycle Analyses 

MDS-L cells (7.5 X 105 cells/ml) were exposed to increasing concentration 

of WFA (0 – 5 µM) for 48 h. Treated cells were fixed with cold 70% ethanol for 1 

h at 4 0C. The cells were washed 3X with PBS and incubated in a Propidium 

Iodide (PI) and RNase A cocktail (20 µg/ml and 250 µg/ml respectively, in 0.1% 

Triton X-100 in PBS) at 37 0C for 30 min. PI fluorescence was detected on the 

BD FACSCalibur flow cytometer and analyses were performed using the ModFit 

Software (Verity Software House Inc., Topsham, Maine). 

2o) Statistical Analysis 

GraphPad Prism 6.05 was used for statistical analyses (GraphPad 

Software, Inc., La Jolla, CA). Statistical significance of differences between 

groups was evaluated by Student’s t test, linear regression analysis or Tukey’s 

multiple comparisons test as appropriate and p values < 0.05 were considered 

significant. 
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CHAPTER 3 

WFA has a potent but selective anti-proliferative effect on MDS-L cells in 

vitro and in vivo 

The complex and heterogeneous nature of MDS has made it challenging 

to generate a widely accepted mouse model that recapitulates a complete 

disease phenotype133. Efforts to develop a xenotransplantation model of primary 

MDS cells into immunocompromised mice have been thwarted by poor and 

highly inefficient bone marrow engraftment of these cells125,126. Development of 

cell line models for MDS has not been met with much success either. Several 

human MDS cell lines have been described in the literature but only the MDS-L 

cell line has been validated to be a legitimate cell line that is representative of 

MDS129. MDS-L is a subline of the MDS92 cell line that was derived from the 

bone marrow of an MDS patient127,128. Importantly, MDS-L cells successfully 

engraft the bone marrow of immunocompromised mice to induce an MDS-like 

disease that recapitulates some key features of human MDS130. Like human 

MDS, the MDS-like disease induced by MDS-L engraftment is clonal1,130. In 

addition, mice develop anemia and thrombocytopenia as the disease progresses, 

two commonly observed cytopenias in human MDS3,130. The MDS-L model is 

therefore considered an appropriate model for preclinical MDS studies and was 

our model of choice to investigate the therapeutic potential of WFA in MDS.  
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3a) WFA effectively decreased viability of MDS-L cells in vitro 

Initial studies were performed to determine the effect of WFA on MDS-L 

cells in vitro. WFA caused a dose dependent decrease in cell viability of MDS-L 

cells by MTT assay (Figure 3.1A). Observed IC50 varied depending on the 

seeding cell density. 2 – 3 μM when 0.75 Х 105 cells were seeded per well, 3 – 5 

μM for 1 Х 105 cells and 5 - 7μM for 1.5 Х 105 cells (Fig 3.1A). The decrease in 

viability of MDS-L cells by WFA was also demonstrated by trypan blue exclusion 

assay. Similar to the MTT assay, WFA caused a dose dependent decrease in 

viability of MDS-L cells by trypan blue exclusion (Figure 3.1B). Lenalidomide 

(LENA) is the US Food and Drug Administration (FDA) approved treatment of 

MDS with a deletion in chromosome 5q (del (5q))134. Since MDS-L cells have a 

deletion in chromosome 5127, we evaluated how WFA compared to LENA in 

inducing growth inhibition of MDS-L cells. To our surprise, WFA was substantially 

more effective than LENA in inhibiting the proliferation of MDS-L cells in vitro 

(Figure 3.2A). This observation was not dependent on the seeding cell density as 

similar results were obtained even with a lower seeding cell density (Figure 

3.2B). The markedly low or more of a complete lack of cytotoxicity by LENA on 

MDS-L cells (Figure 3.2A, B) led us to consider the possibility that our drug might 

be inactive since published reports have shown the cytotoxic effects of LENA on 

MDS-L cells127 and human primary MDS cells with a 5q chromosomal deletion135. 

To address this possibility, we replicated a published experiment in which the 

effect of LENA on the proliferation of MDS-L cells was assessed by adding 10 

μM of drug every 24 h and counting the number of viable cells over time127. The 
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marked difference we observed between WFA and LENA was not due to drug 

inactivation because addition of LENA every 24 h to MDS-L cells inhibited their 

proliferation (Figure 3.3A) and our results were very similar to the published 

results (Figure 3.3B). This requirement of replenishing LENA every 24 h in order 

to observe its cytotoxicity might be due to its reported half-life of about 8 h in 

vitro136. However, a single dose of LENA inhibited the proliferation of human 

multiple myeloma cell lines136 . After establishing that we had to replenish LENA 

every 24 h to observe its cytotoxic effects on MDS-L cells, we investigated 

whether the cytotoxic effects of WFA and LENA could be combinatorial. 

Combining a single dose of WFA to everyday addition of LENA on MDS-L cells 

was not superior to either drug alone (Figure 3.4). In fact, WFA was distinctly 

superior to LENA in inhibiting the proliferation of MDS-L cells under these 

conditions. Since transformation to AML occurs in approximately 30 – 40% of 

MDS cases135, we also investigated if WFA is cytotoxic to the human AML KG1 

cell line.  WFA caused a dose dependent decrease in viability of KG1 cells 

(Figure 3.5). 

3b) WFA inhibited bone marrow engraftment of MDS-L cells in NSGS mice 

In vivo efficacy was evaluated using the MDS-L NSGS xenograft model, 

where mice exposed to 2.5Gy irradiation are injected with 1 x 106 MDS-L cells 4 

h later130. We chose to use NSGS mice for these studies because although 

MDS-L was reported to successfully engraft the bone marrow of both NSG and 

NSGS mice, we found engraftment to be less efficient in NSG mice (< 1%). 

Irradiation serves as a preconditioning regimen to enhance bone marrow 
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engraftment. We had found from our previous studies that the combination of 

radiation and WFA was toxic to BALB/c mice. It was therefore essential to 

determine the best tolerated dosing schedule for the radiation and WFA 

combination especially since scid mice are hypersensitive to radiation137. We 

found that NSGS mice had not completely recovered from radiation-induced 

weight loss even at 14 days post exposure to 2.5Gy irradiation (Figure 3.6). 

However, WFA treatment from day 14 post irradiation did not adversely impact 

complete recovery by day 21 (Figure 3.6). We therefore decided to begin WFA 

treatment on day 14 post irradiation and engraftment as illustrated in Figure 3.7A. 

A combination of mouse and human cell surface markers was used to positively 

identify engrafted MDS-L cells (Figure 3.7B). 8 mg/kg WFA treatment 

significantly reduced engraftment of MDS-L cells in the bone marrow of NSGS 

mice (Figure 3.7C, D). The 8 mg/kg dose was well tolerated as minimal weight 

loss was observed in WFA treated mice compared to vehicle controls (Figure 

3.7E). Remarkably, WFA treatment did not cause any apparent bone marrow 

suppression of endogenous mouse stem cells at the dose used (Figure 3.8). This 

is of particular importance because nearly all chemotherapy drugs cause bone 

marrow suppression which leads to treatment delays and significant dose 

reductions138. In fact, it is estimated that about 56% of patients on chemotherapy 

receive less than 85% of the minimum optimal dose for treatment138. We also 

found that WFA treatment expanded the stem cell population of non-engrafted 

mice over control mice (Figure 3.8, p = 0.07). However, additional studies with a 

larger sample size are needed to confirm this observation. While the prospect of 
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stem cell expansion by WFA has potential therapeutic benefits, serial 

transplantation studies are required to determine the functionality of these 

expanded stem cells. 

3c) Cytotoxicity of WFA is selective to malignant cells 

The clinical relevance of the results obtained with the MDS-L and KG1 cell 

lines were validated by testing the effect of WFA on the viability of human 

primary bone marrow cells from MDS and AML patients. WFA induced a dose-

dependent increase in apoptotic cell death of primary MDS and AML bone 

marrow patient cells (Figure 3.8A, B). The cytotoxic effects of WFA are selective 

to malignant cells because it had no significant impact on the viability of normal 

human primary bone marrow cells even at the highest dose tested (Figure 3.9). 
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Figure 3.1: WFA significantly decreased the viability of MDS-L cells in vitro 
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(A) MDS-L cells were treated with WFA at different cell densities (0.75 Х 105, 1 Х 

105 or 1.5 Х 105 cells per well in 200 µl of media of a 96 well plate) for 48 h and 

cell viability was measured by MTT assay. Data are presented as mean ± SD of 

triplicate cultures. Results are representative of more than 3 experiments. (B) 

MDS-L cells (7.5 X 105 cells/ml) were treated with increasing concentrations of 

WFA for 48 h and cell viability was determined by trypan blue dye exclusion. 

Data are presented as mean ± SD of triplicate cultures and results from one of 2 

similar experiments are shown. 
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Figure 3.2: WFA is substantially more cytotoxic to MDS-L cells compared to 

lenalidomide 

MDS-L cells were treated with WFA or LENA at 1.5 Х 105 cells (A) or 0.75 Х 105 

cells (B) per well of a 96 well plate), for 48 h and cell viability was measured by 
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MTT assay. Data are presented as mean ± SD of triplicate cultures. Data are 

representative of three independent experiments. * = p<0.05, ** = p<0.005. 
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Figure 3.3: Drug replenishment every 24 h is required to observe 

lenalidomide-induced cytotoxicity of MDS-L cells 

(A) MDS-L cells were cultured in the presence of DMSO or lenalidomide (10 μM) 

which were added daily. The number of viable cells was counted by trypan blue 

exclusion on the indicated days. Data are presented as mean ± SD of triplicate 
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cultures. (B) Published data of a similar experiment using MDS-L cells and the 

same concentration of lenalidomide. Reproduced with permission from Nature 

Publishing Group; license number 3991040149727.  

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

47 
 

 

Figure 3.4: The combined cytotoxic effects of WFA and lenalidomide are 

neither additive nor synergestic 

MDS-L cells were cultured with DMSO, lenalidomide (10 μM), WFA (5 μM) or 

WFA (5 μM) and lenalidomide (10 μM). WFA was added on day one of the 

experiment while lenalidomide was added daily during the course of the 

experiment. The number of viable cells was determined by trypan blue exclusion. 

Data are presented as mean ± SD of triplicate cultures. Representative data of 

two independent experiments are presented. 
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Figure 3.5: WFA significantly decreased the viability of KG1 cells in vitro 

KG1 cells were treated with DMSO or WFA at 1.5 Х 105 cells per well of a 96 well 

plate for 48 h and cell viability was measured by MTT assay. Data are presented 

as mean ± SD of triplicate cultures. Results are representative of two 

experiments. 
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Figure 3.6: Toxicity from combining radiation and WFA treatment is 

prevented by delaying WFA treatment 

Mice were weighed on day 0 to determine baseline weights and exposed to 

2.5Gy total body irradiation. On day 14 post irradiation, irradiated mice were 

treated with WFA (8 mg/kg) for 5 consecutive days. Weights were monitored 

during and after WFA treatment. Littermate mice neither exposed to radiation nor 

treated with WFA were used as controls.  
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Figure 3.7: WFA significantly reduced engraftment of MDS-L cells in the 

bone marrow of NSGS mice 

(A) Schematic representation of the experiment conducted to test the in vivo 

effect of WFA in the MDS-L NSGS mice xenograft model. (B) Flow cytometry 

gating scheme used for positive and specific identification of engrafted human 

MDS-L cells. Bone marrow cells were stained with mouse anti-mouse CD45-

APC, and anti-human antibodies (CD45-PE and CD33-FITC) to identify mouse 

and MDS-L cells respectively. The human markers were applied to the mouse 

CD45 negative gate to ensure accuracy and specificity as false positive cells 

were not detected in non-engrafted mice. (C) Representative flow cytometry 

profiles of vehicle or WFA treated mice using the gating scheme illustrated in (B). 

(D) Engraftment of MDS-L cells was calculated as a percentage of total bone 

marrow cells. Average engraftment of 20 mice in the vehicle control group and 27 

mice in the WFA group ± SD is shown. (E) Average weight variation of mice 

during the course of the study. * = p<0.05. 
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Figure 3.8: WFA treatment does not cause mouse bone marrow 

suppression 

Bone marrow cells from MDS-L engrafted and non-engrafted mice treated with 

WFA or vehicle; or control mice were labeled with biotin-coupled rat anti-mouse 

lineage specific antibodies to CD11b (Mac-1), B220, Gr-1, CD8α, Ter-119 and 

CD5. Lineage negative, Sca-1 positive and c-KIT positive (LSK) stem cells were 

identified by flow cytometry analyses of lineage labelled cells stained with 

streptavidin APC CY7, Sca-1-PB and c-KIT-APC. Mean % of LSK cells for a 

minimum of 5 mice per group ± SD is shown. ** = p<0.005 
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Figure 3.9: WFA induced apoptosis of human primary MDS and AML bone 

marrow cells 

Human primary MDS (A) or AML (B) samples were treated with various 

concentrations of WFA and stained with annexin-V and PI after 24 h of culture. 

Cell viability was assayed by flow cytometry and the percentage of live or non-

apoptotic cells defined as annexin-V and PI negative are shown. 

Experiment performed in collaboration with Rajeswaren Mani DVM, PhD. 
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Figure 3.10: WFA had no significant effect on the viability of normal human 

primary bone marrow cells 

Normal human primary bone marrow cells were treated with DMSO or WFA at 1 

Х 106 cells per well of a 96 well plate for 48 h and cell viability was measured by 

MTT assay. Data are presented as mean ± SD of triplicate cultures. 

Representative results of two independent experiments are shown. 
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Summary 

WFA induced a dose dependent decrease in viability of MDS-L cells in 

vitro. The IC50 varied by cell density per well. Dose response variability with cell 

density suggests that a minimum threshold of drug might be required to induce 

WFA cytotoxicity in cells, i.e, insufficient drug is available to meet that threshold 

in all cells when high cell density is used. WFA was markedly more effective than 

lenalidomide, the current FDA approved drug for the treatment of 5q MDS, in 

inhibiting the viability of MDS-L cells in vitro. Consistent with the in vitro data, 

WFA significantly inhibited engraftment of MDS-L cells in NSGS mice without 

bone marrow suppression which is an important dose-limiting side effect of most 

chemotherapy drugs. WFA was also cytotoxic to human primary MDS cells but 

had no significant effect on the viability of normal human primary bone marrow 

cells. We also found WFA to be cytotoxic to the AML cell line KG1 as well as 

several human primary AML cells. These data suggest that WFA could be a 

novel therapeutic agent for the treatment of MDS/AML with minimal side effects. 
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CHAPTER FOUR 

Signaling pathways involved in WFA-induced apoptosis in MDS-L cells 

To investigate possible mechanisms mediating WFA-induced growth 

suppression of MDS-L cells, our initial efforts tested whether the mechanisms 

widely reported to mediate growth inhibitory effects of WFA in other cancer 

models were true for MDS as well. Inhibition of NF-κB is amongst the 

mechanisms most commonly reported to mediate the anticancer effects of 

WFA41,44. NF-κB has been implicated in hematologic and solid tumors139. The 

oncogenic potential of NF-κB is demonstrated by its ability to stimulate cell 

proliferation, inhibit apoptosis and promote metastasis140. In fact, NF-κB has 

been suggested as a potential therapeutic target in MDS139. Therefore, we tested 

if NF-κB was involved in the inhibition of MDS-L cell survival by WFA. To our 

surprise, NF-κB was unaffected by WFA treatment in MDS-L cells as shown by 

both immunofluorescence (4.1A, B) and immunoblotting (4.1C) analyses of the 

nuclear and cytoplasmic distribution of the p65 subunit. In fact, we found that NF-

κB was not constitutively active in MDS-L cells. 

These results prompted us to perform mechanistic studies from a different 

angle. We used gene expression changes mediated by WFA to explore possible 

mechanisms mediating the cytotoxic effects of WFA in MDS-L cells. To this end, 

we performed microarray gene expression analysis using the Affymetrix human 

gene 2.0 ST array platform. The gene expression profile of MDS-L cells treated 

with 10 μM WFA for 6 h or 12 h was compared to control. Three independent 
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samples were used per experimental group. We focused on early time points in 

an effort to identify primary gene alterations caused by WFA. 

4a) WFA significantly altered expression of genes linked to cell death and 

survival, cell growth and proliferation, cell cycle regulation and cancer 

Differentially expressed genes between control and WFA treatment 

groups determined as fold change > 3 and q-value <0.05 were used as input for 

Bio Functional Analysis by the ingenuity pathway analysis (IPA) software. The 

top 15 enriched biological functions and /or diseases most in the data set are 

shown in Figure 4.2. Consistent with the results in chapter one, cell death and 

survival, cell growth and proliferation, cell cycle regulation and cancer were 

amongst the top significantly regulated biological processes at both 6 h (Figure 

4.2A) and 12 h (Figure 4.2B).  The top 10 elevated and repressed genes were 

arranged according to fold changes and we found that c-Jun (Jun) and FosB 

were among the top 3 up-regulated genes at 6 h and the top 2 up-regulated 

genes at 12 h (Figure 4.3). We also performed gene set enrichment analysis 

(GSEA) using the GSEA software to identify significantly enriched pathways. 

WFA resulted in a highly significant enrichment in expression of apoptosis related 

genes at both 6 h (Figure 4.4A, false discovery rate (FDR) q-value = 0.0001; 

family-wise error rate (FWER) p-value = 0.0001) and 12 h (Figure 4.4B, FDR q-

value = 0.0001; FWER = 0.008). These results suggest the possibility that WFA 

inhibited MDS-L proliferation and viability (chapter one) by inducing apoptotic cell 

death. 
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4b) WFA induced apoptosis of MDS-L cells 

Pathway enrichment analyses of the microarray data revealed WFA 

treatment significantly affected expression of apoptosis related genes (Figure 

4.4). Therefore, we performed apoptosis assays to determine if changes in the 

expression of these genes had a functional consequence on MDS cells. A 

decrease in mitochondrial membrane potential (MMP) is a well-known indicator 

of apoptosis141. So we tested if WFA decreased the MMP of mitochondria in 

MDS-L cells. MMP measurement was performed by the widely used JC-1 assay. 

JC-1 is a lipophilic cationic dye with a unique property in that it reversibly 

changes color from orange-red to green as MMP decreases132. This property is 

due to the ability of JC-1 to form aggregates at high concentrations within the 

mitochondrial interior, which revert to monomers in the cytosol where 

concentration decreases132. The concentration of  JC-1 within the mitochondria of 

viable cells is driven by the negative potential gradient between the mitochondrial 

interior and the cytosol132. The negative potential gradient between mitochondrial 

interior and the cytosol is lost as MMP decreases, causing a release of the dye 

into the cytosol where it is less concentrated132. Therefore, a decrease in the 

aggregate/monomer ratio is indicative of a decrease in MMP. Treatment of MDS-

L cells with WFA resulted in a significant decrease in MMP (Figure 4.5A, B). 

During apoptosis, a decline in MMP ultimately results in the activation of 

caspases141,142. Caspases are a family of proteases that are crucial regulators of 

the apoptotic process and caspase-3 is the most frequently activated of the 

known human caspases142. Immunoblotting analysis revealed that WFA activated 
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caspase-3 in MDS-L cells as early as 6 h after WFA treatment which persisted at 

12 h of WFA exposure (Figure 4.6). As expected, there was a concomitant 

decrease in total caspase-3 (Figure 4.6). To further establish the apoptosis 

induction by WFA, we performed an annexin-V apoptosis assay by flow 

cytometry on WFA-treated MDS-L cells. Consistent with the MMP and caspase-3 

data, WFA caused a dose-dependent increase in apoptotic cells (Figure 4.7A, B).  

4c) WFA activated JNK MAPK signaling in MDS-L cells 

After having confirmed that growth suppression of MDS-L cells by WFA 

involved cell death by apoptosis, we next investigated possible signaling pathway 

(s) mediating apoptosis of MDS-L cells treated with WFA. Apoptosis pathways 

linked top up-regulated genes (Figure 4.3) were examined. Our process involved 

verifying the microarray data and scouring the literature for evidence suggesting 

the gene in question is involved in apoptosis induction. Bcl2-associated 

athanogene 3 (BAG3) and Regulator of G-protein signaling 2 (RGS2) highlighted 

in blue (Figure 4.3), are examples of genes which fell short, though they were 

highly up-regulated. Although we were able to verify induction of BAG3 by qRT-

PCR (Figure 4.8), evidence from the literature suggest it plays more of an anti-

apoptotic role143. It is likely that BAG3 up-regulation was a secondary feedback 

effect from the induction of apoptosis rather than the mediator. This highlights the 

challenge of identifying primary gene expression changes from global gene 

expression data sets. For RGS2 on the other hand, although there is evidence 

from the literature suggesting RGS2 mediates apoptosis144-146, the microarray 

data could only be validated at the mRNA but not at the protein level (Figure 4.9). 
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In addition, the p38 MAPK pathway that is thought to be involved in RGS2 

mediated apoptosis144 is not activated by WFA in MDS-L cells (Figure 4.9B). The 

dramatic reduction in p38 MAPK activation at early time points may have some 

role in reduction of RGS2 but the decrease in these proteins suggests a pro-

survival role for them in the context of MDS-L cells. However, this was not further 

investigated as we focused on genes that have positive effects on expression or 

activation of pro-apoptotic molecules.  

c-Jun and FosB were also among the top 3 up-regulated genes at 6 h and 

the top 2 up-regulated genes at 12 h by WFA in MDS-L cells (Figure 4.3). c-Jun 

and FosB can heterodimerize to form an AP-1 transcription factor that is 

activated by phosphorylation of the c-Jun subunit by JNK93,101. It has been 

demonstrated that apoptosis can be regulated by JNK/AP-1 signaling93. Hence, 

we investigated if WFA activated JNK/AP-1 signaling in MDS-L cells. Even 

though JNK signaling can be triggered by cytokine receptor signaling, we chose 

to investigate an ROS mediated JNK activation pathway considering that ROS 

production has been shown to mediate WFA effects in other cancer systems44,93. 

JNK cascade activation can be mediated by the ROS sensitive ASK1 which 

activates MKK7, the MAP2K known to specifically activate JNK98,108. Taking all 

these facts together, we hypothesized that ROS mediated JNK activation will 

have a role in AP-1 expression in MDS-L cells treated with WFA as illustrated in 

Figure 4.10. To test this hypothesis, we first verified WFA-induced expression of 

c-Jun and FosB by qRT-PCR. As can be seen from figure 4.11, there was a 

robust increase in c-Jun (Figure 4.11A) and FosB mRNA (Figure 4.11B). Next, 
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we examined if WFA treatment caused any changes in ROS production in MDS-

L cells since increase in ROS is the initiating event of the proposed signaling 

pathway activated by WFA (Figure 4.10). WFA increased ROS accumulation in 

MDS-L cells compared to DMSO control as measured by increased fluorescence 

of the ROS sensitive dye, carboxy-H2DCFDA (4.12A, C). Pretreatment for 4 h 

with NAC, a ROS scavenger, before adding WFA led to complete inhibition of 

WFA generated ROS (Figure 4.12B, C). As illustrated in Figure 4.10, an increase 

in ROS can lead to ASK1 activation which is the MAP3K upstream of MKK7. 

Hence, we verified if the observed increase in ROS production by WFA activated 

ASK1 by examining the phosphorylation status of MKK7. Indeed, we found that 

WFA increased MKK7 phosphorylation or activation (Figure 4.13A). Given that 

MKK7 solely activates JNK98, WFA treatment also led to increased JNK 

activation as expected (Figure 4.13B). Activated JNK is known to translocate to 

the nucleus where it phosphorylates c-JUN (Figure 4.10). Therefore, it was no 

surprise that c-Jun phosphorylation was increased by WFA treatment (Figure 

4.13C). The fact that c-Jun phosphorylation was only detectable at 6 h compared 

to JNK phosphorylation which could be detected as early as 30 min, suggested a 

sequential activation of the signaling cascade (Figures 4.10 and 4.13). Total c-

Jun protein levels increased at both 6 and 12 h (Figure 4.13C) which was in 

agreement with the qRT-PCR results (Figure 4.11A). These results suggest that 

increase in JNK activation and c-Jun expression could both contribute to the 

observed increase in c-Jun phosphorylation. 
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Phosphorylation of c-Jun is associated with transcriptional activation of 

AP-1101 (Figure 4.10). We therefore then performed an AP-1 luciferase assay to 

determine if WFA-induced increase in c-Jun and FosB in MDS-L cells had a 

functional consequence on the transcriptional activity of AP-1. MDS-L cells 

transfected with either the AP-1 reporter or empty vector expressing firefly 

luciferase were treated with WFA for 12 h and promoter activity was assessed by 

the dual Glo luciferase assay. The known activator of AP-1, PMA, was used as a 

positive control for luciferase assays147. Cells were co-transfected with a control 

vector expression renilla luciferase under the control of a constitutively active 

thymidine kinase promoter. WFA potently induced AP-1 luciferase expression 

(Figure 4.14A). These data were expanded by demonstrating transcriptional 

activity of AP-1 even further by showing that WFA increased mRNA expression 

of BIM (BCL2L12) (Figure 4.14B) and p21 (Figure 4.14C), both of which are bona 

fide AP-1 targets85,111,112. 

4d) WFA arrested MDS-L cells at S and G2/M cell cycle phases 

p21 is a well-known negative regulator of cell cycle progression107. 

Therefore, the increase in p21 expression following WFA treatment (Figure 

4.14C) suggested that WFA might cause cell cycle arrest of MDS-L cells. 

Moreover, WFA has been shown to induce cell cycle arrest of several other types 

of cancer cells44,45. Hence, we asked if WFA treatment had an effect on the 

cycling of MDS-L cells. Cell cycle analysis by flow cytometry showed WFA 

indeed caused MDS-L cells to arrest at both S and G2/M phases (Figure 4.15). 

Consistent with cell cycle analysis data, treatment with WFA significantly 
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decreased mRNA and protein levels of the cyclins and CDKs required for 

completion of both S (cyclin A and CDK2) (Figure 4.16A-C) and G2/M (cyclin B 

and CDK1) (Figure 4.17A-C) phases of the cell cycle. The observed decreases in 

expression of these cyclins and Cdks could likely be explained by increased 

expression of p21 (Figure 4.14C). Even though p21 inhibits cell cycle progression 

primarily by inhibiting the activities of CDK1 and CDK2, it has also been shown to 

be involved in transcriptional repression of several cell cycle genes including 

cyclins and Cdks such as CDK1, CCNB1 and CCNA191,148,149. WFA-induced cell 

cycle arrest could also contribute to apoptotic death of MDS-L cells since 

prolonged arrest in S and G2/M phases eventually triggers apoptosis85. 
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Figure 4.1: Cytotoxic effects of WFA in MDS-L cells are independent of NF-

κB activation 

(A) MDS-L cells treated with 10 μM WFA or DMSO for 4 h were stained for the p-

65 subunit of NF-κB and nuclear and cytoplasmic distribution of NF-κB was 

determined by fluorescence microscopy. A representative field is shown. (B) 

Quantification of cells (> 200 cells) in several fields with nuclear and/ or 

cytoplasmic p-65 in MDS-L cells treated with10 μM WFA or DMSO for 4 h. (C) 

Nuclear and cytoplasmic protein fractions of cells treated with 10 μM WFA or 

DMSO for 2 or 4 h were used for western blotting to examine the effect of WFA 

treatment on nuclear translocation of the p65 subunit of NF-κB. Cytoplasmic (C) 

or nuclear (N) p65 NF-κB was normalized to GAPDH or Hdac1 respectively and 

densitometric ratios are shown. Data are representative of two independent 

experiments. 
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Figure 4.2: Biological functions and/ or diseases most significantly affected 

by WFA treatment in MDS-L cells 

Heatmap of differentially expressed genes (p<0.05) between control and 6 h 

WFA treated samples (A) or 12 h WFA treated samples (B). The top fifteen 

biological functions and /or diseases enriched in the data set identified by IPA are 

shown. Genes that belong to a specific IPA biological function are clustered and 
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represented by a colored square next to the heatmap. Color key legend 

represents log2 normalized expression values ranging from low expression 

(green) to high expression (red). 
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Figure 4.3: Heatmap of top 20 WFA regulated genes by fold change 

The top 10 elevated (top half) and repressed (bottom half) genes by WFA at 6 h 

and 12 h arranged by fold change are shown. 
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Figure 4.4: Genes differentially regulated by WFA are linked to apoptosis 

induction 

Gene set enrichment analysis (GSEA) revealed enrichment of apoptosis related 

genes by WFA treatment at both 6 h (A) and 12 h (B) compared to control. 
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Figure 4.5: WFA decreased mitochondrial membrane potential in MDS-L 

cells 

MDS-L cells were treated with WFA (10 μM or 20 μM) for 8 h or FCCP (50 μM) 

for 2 h. One μM JC-1 was added during the last 30 min of treatment and the 

distribution of JC-1 aggregates (red) and monomeric JC-1 (green) was analyzed 

by flow cytometry. (A) Representative overlays of JC-1 aggregates or monomers 

by mean fluorescent intensity. 10 μM WFA caused a decrease in fluorescence of 

JC-1 aggregates with a concomitant increase in JC-1 monomer fluorescence 

(upper panel) and the effect was even more dramatic with 20 μM WFA treatment 

(lower panel). (B) Results are shown as mean ratios ± SD of JC-1 



www.manaraa.com

77 
 

aggregates/monomers as a function of treatment (n = 3). *** = p<0.0005. 

Representative data from one of several experiments with similar results are 

shown. 
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Figure 4.6: WFA stimulated activation of caspase-3 

Whole cell lysates from control or WFA treated (6 h or 12 h) MDS-L cells were 

used for immunoblotting. Protein expression of activated (cleaved caspase-3) or 

total caspase-3 was normalized to GAPDH (loading control) expression and 

densitometric ratios are shown. Results are representative of several 

experiments. 
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Figure 4.7: WFA induced apoptosis of MDS-L cells 

Cells were treated with increasing concentration of WFA for 48 h and apoptosis 

was measured by annexin-V and PI staining. (A) Panels show representative 

flow cytometry profile for each WFA concentration used. (B) Graph shows 

percentage of annexin-V positive cells at different doses of WFA presented as 

mean ± SD (n = 3). Data from one of three independent experiments with similar 

results are shown. 
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Figure 4.8: Up-regulated mRNA expression of BAG3 in MDS-L cells treated 

with WFA 

qRT-PCR of BAG3 mRNA in cells treated with DMSO or WFA (6 h and 12 h). 

Gene amplification was normalized to RPII expression and relative amplification 

was determined by normalizing to DMSO control. ** = p<0.005, *** = p<0.0005. 
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Figure 4.9: WFA increased mRNA but not protein expression of RGS2 or 

p38 MAPK activation in MDS-L cells 

(A) Total RNA isolated from cells treated with DMSO or WFA (6 h and 12 h) was 

used to determine mRNA expression of RGS2 by qRT-PCR. Gene amplification 

was normalized to RPII expression and relative amplification was determined by 

normalizing to DMSO control. (B) Western blots showing the effect of WFA 

treatment on p38 MAPK activation and RGS2 protein expression. GAPDH was 

used as a loading control. Western blot analysis is representative of two 

independent experiments. * = p<0.05, ** = p<0.005. 
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Figure 4.10: Schematic representation of ROS mediated JNK/AP-1 signaling 
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Figure 4.11: WFA enhanced mRNA expression of c-Jun and FosB 

Total RNA was isolated from cells treated with DMSO or WFA (6 h and 12 h). 

The RNA samples were analyzed by qRT-PCR for c-Jun (A) and FosB mRNA 

levels(B) using human specific primers. Gene amplification was normalized to 

RPII expression and relative amplification was determined by normalizing to 

DMSO control. ** = p<0.005, *** = p<0.0005. Representative data of two 

independent experiments are shown. 
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Figure 4.12: WFA treatment increased ROS production in MDS-L cells 

Representative flow cytometry profiles of ROS production in MDS-L cells by DCF 

fluorescence (A, B). Increased ROS production in MDS-L cells exposed to 10 μM 

WFA for 30 min (A). 4 h pretreatment with NAC before exposure to WFA 

inhibited ROS production (B). Amount of ROS produced normalized to DMSO 

control samples. Mean measurements ± SD of three separate samples are 

shown (C). ** = p<0.005, *** = p<0.0005. Results are representative of several 

experiments. 
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Figure 4.13: JNK MAPK signaling cascade is activated by WFA in MDS-L 

cells 

Western blot analysis of P-MKK7 (A), P-JNK (B) and P-c-Jun (C) on cell lysates 

of MDS-L cells treated with or without WFA (10 μM) for the indicated time-points. 

Activated or phosphorylated protein expression was normalized to the respective 

total protein expression. Total c-Jun expression was normalized to GAPDH which 

was also used as a loading control. Relative protein expression was analyzed by 

densitometry. The values shown are fold change protein expression with respect 

to DMSO controls. Data are representative of at least two independent 

experiments. 
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Figure 4.14: WFA triggered AP-1 transcriptional activity in MDS-L cells 

(A) MDS-L cells were co-transfected with either an AP-1 or empty firefly 

luciferase expression vector and a renilla luciferase vector under the control of a 

constitutive promoter (2:1). Transfected cells were treated with WFA (10 μM) or 

PMA (30 ng/ml) for 12 h and promoter activity was assessed by the dual Glo 

luciferase assay. Firefly luciferase activity relative to renilla luciferase activity is 

shown. Data are presented as mean ± SD of triplicate cultures. 

(B, C) Total RNA was isolated from cells treated with DMSO or WFA (6 h and 12 

h). The RNA samples were analyzed by qRT-PCR for BIM (B) or p21 (C) 

expression using human specific primers. Gene amplification was normalized to 

RPII expression and relative amplification was determined by normalizing to 
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DMSO control. ** = p<0.005, *** = p<0.0005. Results from one of at least two 

similar experiments are shown. 
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Figure 4.15: Induction of cell cycle arrest in WFA-treated MDS-L cells 

Cells were treated with the indicated concentrations of WFA for 48 h and stained 

with PI. Intensity of PI staining which correlates with DNA content was analyzed 

by flow cytometry. The fraction of cells (%) at each phase is shown. Data are 

presented as mean ± SD from triplicate cultures. * = p<0.05, ** = p<0.005, *** = 

p<0.0005; denotes significant differences in G, S and G2/M fractions between 

cultures with and without WFA. Data shown are representative of three 

experiments. 
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Figure 4.16: mRNA and protein expression of cyclin A and CDK2 decrease 

with WFA treatment 

Total RNA samples isolated from cells treated with DMSO or WFA (6 h and 12 h 

were analyzed by qRT-PCR for cyclin A (A) and CDK2 (B) expression using 

human specific primers. Gene amplification was normalized to RPII expression 

and relative amplification was determined by normalizing to DMSO control.  

(C) Whole cell lysates from control or WFA treated (6 h or 12 h) MDS-L cells 

were analyzed by immunoblotting for cyclin A and CDK2 protein expression. 

Band intensities were normalized to GAPDH and are expressed as densitometric 

ratios. * = p<0.05, *** = p<0.0005. Results from one of two experiments with 

similar results are shown.  
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Figure 4.17: mRNA and protein expression of cyclin B and CDK1 decrease 

with WFA treatment 

Total RNA samples isolated from cells treated with DMSO or WFA (6 h and 12 

were analyzed by qRT-PCR for cyclin B (A) and CDK1 (B) expression using 

human specific primers. Gene amplification was normalized to RPII expression 

and relative amplification was determined by normalizing to DMSO control.  

(C) Whole cell lysates from control or WFA treated (6 h or 12 h) MDS-L cells 

were analyzed by immunoblotting for cyclin B and CDK1 protein expression. 

Relative expression to β-actin is indicated by band intensity ratios. *** = 

p<0.0005. Results from one of two similar experiments are shown. 
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Summary 

We performed microarray gene expression analysis to identify the molecular 

mechanisms mediating WFA-induced cytotoxicity of MDS-L cells. Analysis of the 

differentially expressed genes revealed that WFA significantly regulated genes 

linked to apoptosis. The substantial increase in gene expression of AP-1 

transcription factor subunits (c-Jun and FosB) suggested that WFA activated 

JNK/AP-1 signaling. We used a combination of biochemical techniques to 

validate the microarray data. Our results demonstrated that WFA caused 

apoptosis and activated JNK/AP-1 signaling in MDS-L cells. In depth 

investigation of AP-1 transcriptional activity induced by WFA treatment revealed 

increased transcription of p21, an AP-1 target and cell cycle inhibitor. This finding 

prompted us to test the effect of WFA on MDS-L cell cycle progression leading to 

the observation that WFA inhibited cycling of MDS-L cells by arresting them at S 

and G2/M cell cycle phases. This observation suggests that in addition to direct 

increase in pro-apoptotic factors such as BIM, cell cycle inhibition could 

potentially contribute to WFA-triggered MDS-L since prolonged arrest in S and 

G2/M phases eventually triggers apoptosis85.   
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CHAPTER FIVE 

Selective WFA-induced cytotoxicity to MDS-L cells is primarily mediated by 

increased ROS production 

After confirming that WFA treatment triggered apoptotic cell death and 

activated the JNK MAPK cascade in MDS-L cells, we sought to determine if the 

observed apoptotic cell death was by JNK signaling. We explored this possibility 

by determining the consequence of pharmacologically inhibiting JNK signaling in 

WFA-treated cells on apoptosis. 

5a) JNK signaling plays a significant role in WFA apoptosis of MDS-L cells by 

WFA treatment 

To determine if JNK signaling played a critical role in WFA-induced 

apoptosis of MDS-L cells, we investigated the effect of pretreating cells for 4 h 

with JNK-IN-8, a well characterized JNK inhibitor, on the level of caspase-3 

activation by WFA. JNK-IN-8 is a potent and selective covalent JNK inhibitor 

directed to the ATP-site that was first described in 2012150. Western blot analysis 

showed that pretreatment with JNK-IN-8 reduced phosphorylation of c-JUN 

induced by WFA, an excellent measure of JNK activation (Figure 5.1). JNK 

inhibition led to an expected decrease in AP-1 transcriptional activity, shown by a 

significant decrease in transcription of two well-known AP-1 targets, BIM (Figure 

5.2A, B) and p21 (Figure 5.3A, B). Consistent with the crucial role of BIM in 

regulating apoptosis, inhibition of JNK signaling by JNK-IN-8 blocked caspase-3 

activation by WFA (Figure 5.4A, B). 
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 Off-target effects are always a concern with the use of small-molecule 

inhibitors in biological systems. We therefore employed a second widely used 

JNK inhibitor, SP600125, to verify our results demonstrating the critical role of 

JNK signaling in WFA-activated apoptosis. Similar results with a second inhibitor 

would further argue against the possibility that the phenotype observed with JNK-

IN-8 was due to off-target effects, since SP600125, a reversible ATP-competitive 

JNK inhibitor151, is likely to have a different spectrum of off-targets. We verified 

inhibition of JNK by SP600125 by showing that it reduced WFA-induced 

phosphorylation of c-JUN (Figure 5.5A, B). Pretreatment of MDS-L cells with 

SP600125 also suppressed caspase-3 activation caused by WFA treatment 

(Figure 5.6A, B). 

5b) WFA activated JNK signaling by increasing ROS production 

We had demonstrated that WFA activated the ROS sensitive MAP3K 

(ASK1) of the JNK cascade by increased phosphorylation of its target kinase, 

MKK7 (Figure 4.13A). Hence, we hypothesized that WFA activated JNK/AP-1 

signaling and apoptosis in MDS-L cells by increasing ROS production. We tested 

this hypothesis by investigating the effect of pretreatment with 25 mM NAC, a 

well-known antioxidant, on WFA-induced JNK/AP-1 activation and apoptosis. 

Pretreatment with NAC significantly inhibited WFA-mediated JNK activation 

compared to the no pretreatment control (Figure 5.7A, B). This inhibition 

traversed downstream of the JNK cascade as NAC pretreatment also 

substantially inhibited c-Jun phosphorylation (5.8A, B). In addition, NAC robustly 

inhibited WFA-induced AP-1 transcription demonstrated by both AP-1 driven 
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luciferase activity (Figure 5.9) and measurement of BIM (Figure 5.10A, B) and 

p21 (Figure 5.11A, B) transcripts. Inhibition of AP-1 transcription complimented 

the observed decrease in c-Jun phosphorylation with NAC pretreatment (Figure 

5.8). Consistent with the concept of ROS-mediated JNK activation promoting 

apoptosis in MDS-L cells, NAC pretreatment remarkably abrogated activation of 

caspase-3 in these cells (5.12A). These results indicated that JNK/AP-1 

activation and apoptosis in WFA treated cells was largely due to increased ROS 

production. 

5c) Inhibition of ROS production completely protected MDS-L cells from 

cytotoxicity by WFA treatment 

The significant role of ROS and JNK signaling activation in apoptotic cell 

death of MDS-L cells treated with WFA was further demonstrated using the 

annexin-V apoptosis assay. Inhibition of JNK signaling with JNK-IN-8 significantly 

reduced WFA-induced apoptosis of MDS-L cells (Figure 5.13A, B). On the other 

hand, NAC pretreatment completely protected MDS-L cells from apoptosis 

caused by WFA treatment (Figure 5.13A, B). These results demonstrated that 

not only was ROS upstream of JNK/AP-1 signaling activation (Figure 5.7-5.12), it 

was the predominant mediator by which WFA caused apoptosis in MDS-L cells. 

Of note, WFA failed to increase ROS in normal human primary bone marrow 

cells (Figure 5.14) which were shown previously (Figure 3.10) to be resistant to 

WFA-induced cell death. Hence, ROS production could explain why WFA was 

selectively cytotoxic to MDS-L cells but spared normal bone marrow cells in vitro 

and in vivo (Figures 3.6, 3.7, 3.8 and 3.10).  
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Figure 5.1: JNK-IN-8 effectively inhibits JNK activation by WFA 

Immunoblot analysis of P-c-Jun, total c-Jun and GAPDH (loading control) in 

MDS-L cells treated with WFA for the indicated time-points after no pretreatment 

or pretreatment with JNK-IN-8 (10 μM) for 4 h. P-c-Jun expression is presented 

relative to total c-Jun. 
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Figure 5.2: Inhibition of JNK activity suppresses transcription of BIM 

induced by WFA 

MDS-L cells  were pretreated with or without JNK-IN-8 (10 μM) for 4 h. Total 

RNA isolated from pretreated cells exposed to WFA for 6 h (A) or 12 h (B) was 
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used to determine BIM expression by qRT-PCR. BIM amplification was 

normalized to RPII and relative expression was determined by normalizing to 

DMSO control.  * = p<0.05, ** = p<0.005, *** = p<0.0005. 
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Figure 5.3: JNK activation contributes to p21 transcription in WFA-treated 

MDS-L cells 

qRT-PCR analysis of p21 in MDS-L cells with or without JNK inhibition, treated 

with WFA for 6 h (A) or 12 h (B). p21 amplication was normalized to the RPII 

control gene and the results are presented relative to those of DMSO controls. ** 

= p<0.005, *** = p<0.0005. 
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Figure  5.4: JNK-IN-8 substantially abrogates caspase-3 activation induced 

by WFA in MDS-L cells 

(A) Western blots showing active caspase-3 (cleaved caspase-3) and GAPDH 

levels in MDS-L cells treated with WFA for 2, 6 or 12 h,  with or without JNK 

blockade by JNK-IN-8. (B) Relative cleaved caspase-3 expression in (A) was 

normalized to GAPDH and the values expressed as densitometric ratios are 

shown by a bar graph. 
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Figure 5.5: SP600125 inhibits WFA-induced JNK activity 

MDS-L cells pretreated with SP600125 (40 μM) for 4 h or without pretreatment 

were exposed to WFA for an additional 0.25, 0.5, 1, 2, 6, or 12 h. The effect of 

SP600125 treatment on JNK activity was assessed by immunoblotting for P-c-

Jun (A). Bar graph representation of P-c-Jun expression in (A) normalized to total 

c-Jun and WFA negative control (B). 
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Figure 5.6: SP600125 suppresses activation of caspase-3 by WFA  

MDS-L cells with or without SP600125 (40 μM) treatment for 4 h, were treated 

further with WFA for 2, 6, or 12 h. Whole cell lysates from treated cells were used 

for immunoblot analysis of cleaved caspase-3 and β-actin (A). Cleaved caspase-

3 band intensities were normalized to β-actin and relative expression by 

densitometric ratios is presented graphically (B). 
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Figure 5.7: WFA-induced JNK activation is inhibited by NAC 

Western blot analysis showing the effect of ROS blockade by NAC (25 mM) 

pretreatment for 4 h on WFA-induced JNK activation in MDS-L cells at the 

indicated time points (A). P-JNK expression in (A) expressed as a ratio to total 

JNK, with WFA negative controls set as 1 (B). 
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Figure 5.8: NAC inhibits JNK activity in WFA-treated MDS-L cells 

(A) P-c-Jun levels measured by immunoblotting of WFA-treated MDS-L cells with 

or without ROS blockade by NAC (25 mM) pretreatment for 4 h. (B) P-c-Jun band 

intensities were normalized to those of total c-Jun and densitometric ratios of 

WFA negative controls set to 1. 
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Figure 5.9: WFA-induced AP-1 dependent transcription is inhibited by NAC 

MDS-L cells pretreated with or without NAC (25 mM) for 4 h were co-transfected  

with an AP-1 firefly luciferase expression vector and a renilla luciferase vector 

under the control of a constitutive promoter (2:1). Transfected cells were treated 

with WFA (10 μM) for 12 h and promoter activity was assessed by the dual Glo 

luciferase assay. The ratios of firefly to renilla luciferase activity in relative light 

units are shown. Data are presented as mean ± SD of triplicate cultures. *** = 

p<0.0005. 
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Figure 5.10: Inhibition of ROS blocked BIM transcription in WFA-treated 

MDS-L cells 

BIM expression by qRT-PCR in MDS-L cells with or without ROS inhibition, 

treated with WFA for 6 h (A) or 12 h (B). BIM expression was normalized to RPII 

expression and the results are presented relative DMSO controls. * = p<0.05, *** 

= p<0.0005. 
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Figure 5.11: NAC abrogated WFA-induced p21 transcription 

MDS-L cells  were pretreated with or without NAC (25 mM) for 4 h. Total RNA 

isolated from pretreated cells exposed to WFA for 6 h (A) or 12 h (B) was used to 

determine p21 expression by qRT-PCR. p21 amplification was normalized to 

RPII and relative expression was determined by normalizing to DMSO control. *** 

= p<0.0005. 
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Figure 5.12: ROS inhibition completely abolished WFA-induced caspase-3 

activation 

Western blotting showing the effect of inhbiting ROS accumulation by NAC (25 

mM) pretreatment for 4 h on WFA-induced caspase-3 activation in MDS-L cells 

at the indicated time points.  
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Figure 5.13: NAC protects MDS-L cells from apoptosis by WFA treatment 

No pretreatment or pretreated (JNK-IN-8 or NAC for 4 h) MDS-L cells were 

treated with WFA (10 μM) for an additional 24 h and stained with annexin-V and 

PI. (A) Representative flow cytometry profiles of annexin-V/PI staining. (B) 

Frequency of annexin-V positive cells. Data presented as mean ± SD (n = 3). *** 

= p<0.0005. 
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Figure 5.14: WFA does not increase ROS in normal human primary bone 

marrow cells 

DCFH-DA assay by flow cytometry in normal human primary bone marrow cells 

treated with WFA or H2O2 for 30 min.  
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Summary 

We previously demonstrated that WFA-induced ROS activated JNK/AP-1 

signaling and apoptosis in MDS-L cells (chapter 4). Published studies have 

shown that JNK/AP-1 activation can lead to apoptosis in many cell types93. 

Therefore, we investigated the significance of JNK/AP-1 activation and increased 

ROS production in MDS-L apoptosis by WFA. Pharmacological inhibition of JNK 

by JNK-IN-8 or SP600125 in WFA treated cells revealed that JNK signaling 

significantly contributes to WFA-induced apoptosis. We found that ROS was 

upstream of JNK/AP-1 activation and apoptosis in MDS-L cells, since inhibition of 

ROS with NAC inhibited both JNK/AP-1 signaling and apoptosis. Although 

JNK/AP-1 signaling plays a significant role in WFA-induced apoptosis of MDS-L 

cells, it was not the only pathway activated downstream of ROS because JNK 

inhibition significantly reduced but did not prevent apoptosis. However, ROS 

blockade completely prevented MDS-L apoptosis by WFA, suggesting ROS was 

the predorminant mediator of MDS-L cytoxicity. Consistent with these findings, 

WFA was not cytotoxic to normal human primary bone marrow cells in which 

WFA did not increase ROS levels 
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CHAPTER SIX 

Discussion 

There are three FDA approved drugs for MDS treatment, Lenalidomide, 

azacitidine and decitabine27. Of these three, both azacitidine and decitabine are 

hypomethlating agents29. Azacitidine and its derivative decitabine mediate DNA 

demethylation by inactivating the DNA methylation enzyme, DNA 

methyltransferase-1 (DNMT-1)29. Given that mutations in DNA methylation 

(DNMT3A, TET2, IDH1/2), are recurrent in MDS9, it seems fitting that some MDS 

patients respond to hypomethylating agents. However, the response rate to 

these therapies is low and transient27. Only about 50% of MDS patients respond 

to hypomethylating agents and a majority of responders relapse within 2-3 

years27,29. The outcome of MDS patients after hypomethylating therapy failure is 

very poor; - median overall survival and 2-year survival probability of 5.6 months 

and 15%, respectively, have been reported152. The mechanism of action of 

lenalidomide in MDS is not completely understood. Although it is generally 

thought to be an immunomodulatary agent, lenalidomide-dependent modulation 

of the CRL4CRBN E3 ubiquitin ligase substrate specificity is critical for the activity 

of lenalidomide in del(5q) MDS134,153. Haploinsufficiency of  csnk1a1 in 

hematopoietic stem cells causes an in increase in β-catenin levels  and survival 

advantage while a homozygous loss of csnk1a1 causes p53 accumulation and 

ablation of hematopoietic stem cells by apoptotic cell death154. Therefore, 

targeted degradation by lenalidomide of casein kinase 1A1 (CK1α) in del(5q) 

cells which are haploinsufficient in CK1α expression induces p53-mediated cell-



www.manaraa.com

124 
 

cycle arrest and cell death153. As with hypomethylating agents, the response of 

MDS patients to lenalidomide is often not durable30,134. The incidence of relapse 

with current FDA approved MDS therapies suggests these drugs are likely not 

targeting the disease initiating clone. HSCT is a potentially curative MDS 

treatment but the use of HSCT treatment for MDS is very limited31,32. Less than 

10% of MDS patients are referred to HSCT31. Underuse of HSCT treatment for 

MDS may be because MDS most commonly occurs in older adults and 

comorbidities in older patients limit tolerance to the intensive preconditioning 

HSCT treatments3,31,33. Given the current status of MDS treatment, there is is a 

compelling need to investigate new therapies for MDS treatment.  

Toxicity is a major problem with most of the established chemotherapy 

drugs routinely used for cancer treatment36. Hence, scientific exploration of plant-

derived compounds for cancer treatment is on the rise because they are 

considered to have less toxic side effects36,37. Withaferin A (WFA) is a plant-

derived compound that has been shown to have potential in anticancer 

treatment39. The anticancer activities of WFA have been demonstrated in several 

cancer models including prostate, breast, cervical and pancreatic cancers, as 

well as melanoma and lymphoma44,45. The goal of this study was to determine if 

the anticancer effects of WFA extend to MDS.  

Although several MDS mouse models have been developed, the 

heterogeneity of the disease has made it difficult to generate a mouse that 

models complete disease phenotype133. The NUP98-HOXD13 fusion gene 

transgenic mouse is one of the best of the reported MDS mouse models because 
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it recapitulates a majority of MDS phenotypes including peripheral cytopenias, 

dysplastic cell morphology and progression to AML155. Nonetheless, a majority of 

the mice die rather from precursor T or B-cell lymphoblastic lymphoma/leukemia 

and not MDS155. Xenotransplantation of primary MDS cells has been a challenge 

because engraftment of primary MDS cells into immunocompromised mice is 

poor and highly inefficient125,126. In the present study, we utilized the MDS-L cell 

line model to investigate the anticancer potential and possible underlying 

molecular mechanisms of action of WFA in MDS. MDS-L cells represent a highly 

aggressive form of the disease because they have deletions in chromosomes 5 

and 7127. Deletions in chromosomes 5 and 7 are not just the most common 

cytogenetic abnormalities observed in MDS, but they have also been associated 

with a significantly worse prognosis12,14,16,17. Even though the efficiency was 

highly variable, the engraftment of MDS-L cells in NSGS mice was reproducible.  

We found that WFA significantly inhibited the proliferation of MDS-L cells 

both in vitro and in vivo. Similarly, WFA caused apoptosis of bone marrow cells 

from patients with MDS or AML which validated the clinical relevance of this 

study. Our findings also identified ROS signaling as a potential therapeutic target 

that could selectively eliminate malignant MDS cells while sparing normal cells. 

Importanlytly, WFA did not significantly change ROS levels in primary human 

bone marrow cells, consistent with their resistance to WFA-induced cytoxicity. 

We therefore propose ROS signaling as a potential therapuetic target that could 

selectively target malignant MDS cells while sparing normal cells. 
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6a) Molecular mechanisms mediating apoptosis of MDS-L cells by WFA 

The anticancer activities of WFA have been studied in several cancer 

models but the molecular mechanisms mediating these activities are not clearly 

understood. Several pathways and molecules have been implicated in the 

mechanism of action of WFA in cancer cells, including NF-κB, Akt, Stat3, ER-α, 

endoplasmic reticulum (ER) stress response, ROS, and MAP kinases (p38, ERK 

and JNK)44. It is now becoming clear that although WFA can target multiple 

pathways, certain pathways could be cell type specific44,50. Our finding that the 

mechanism(s) mediating growth inhibitory effects of WFA in MDS-L cells are NF-

κB independent (Figure 4.1) support the idea of cell type specific mechanisms 

induced by WFA. To understand the pathways mediating cell death in MDS-L 

cells treated with WFA, we performed microarray gene expression analyses on 

cells treated with WFA or DMSO. Analyses of the microarray data led us to the 

identify JNK/AP-1 signaling as one of the major pathways mediating WFA-

induced apoptosis of MDS-L cells. Functional analysis of the differentially 

expressed genes revealed WFA induced cell death by apoptosis. Induction of 

apoptosis by WFA in MDS-L cells was confirmed by a decrease in MMP, 

activation of caspase-3 and an increase in the frequency of annexin-V positive 

cells with WFA treatment. A closer look at the top differentially regulated genes 

revealed c-Jun and FosB were substantially induced by WFA; 47- and 52- fold at 

6 and 12 h respectively for c-Jun while FosB was up-regulated 36-fold at 6 h and 

60-fold at 12 h. We focused on c-Jun and FosB because they can heterodimerize 

to form an AP-1 transcription factor that is activated by phosphorylation of the c-
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Jun subunit by JNK and, JNK/AP-1 signaling has been demonstrated to regulate 

apoptosis93,101. In addition, JNK cascade activation can be mediated by the ROS 

sensitive ASK1 and increased ROS production is one of the reported 

mechanisms by which WFA exerts anticancer effects49,62-66,98,108. WFA treatment 

increased ROS and activated JNK/AP-1 signaling in MDS-L cells. Activated or 

phosphorylated JNK can promote apoptosis indirectly by mediating AP-1 induced 

expression of pro-apoptotic proteins like BIM111,112. BIM induces Bax and Bad 

activation by inhibiting pro-apoptotic proteins such as Bcl-2 and Mcl-1, resulting 

in increased mitochondrial permeability and apoptosis156. Our data showed that 

WFA induced BIM expression in MDS-L cells and we also observed a substantial 

decrease in MMP with WFA treatment in MDS-L cells. These results indicate that 

increase in BIM expression by JNK/AP-1 signaling mediates apoptosis of MDS-L 

cells treated with WFA. It is known that sustained p21 expression leads to cell 

cycle arrest and apoptosis85. We also found that WFA induced JNK/AP-1 

dependent expression of p21 and cell cycle arrest in MDS-L cells. Therefore, it is 

probable that cell cycle arrest by JNK/AP-1 control of p21 transcription also 

contributes to apoptosis of MDS-L cells by WFA. 

 Our studies demonstrated that increased ROS production by WFA in 

MDS-L cells activated JNK/AP-1 signaling and apoptosis by showing that ROS 

inhibition abrogated JNK/AP-1 signaling and completely protected MDS-L cells 

from WFA-induced apoptosis. However, JNK signaling is not the only major 

pathway activated by increased ROS that mediates apoptosis of MDS-L cells 

treated with WFA. This is because while we could completely abrogate WFA-
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induced apoptosis of MDS-L cells by inhibiting ROS, inhibition of JNK 

significantly reduced (p<0.0005) but did not completely prevent WFA-induced 

apoptosis of MDS-L cells. The incomplete protection by JNK inhibition by JNK 

inhibitors could be due to their cross-reactivity with other kinases important for 

cell survival. Alternatively, ROS may induce pathway(s) other than JNK that 

mediate apoptosis.  

ROS-induced cell cycle arrest is a plausible simultaneous pathway that 

could promote apoptosis in parallel with JNK signaling. It is known that ROS-

induced DNA damage results in cell cycle arrest85. Cell cycle arrest allows for 

DNA damage repair but apoptosis is triggered if repair fails or is overwhelmed by 

too many DNA lesions157. We observed induction of cell cycle arrest in MDS-L 

cells treated with WFA. Although increased expression of p21 by AP-1 via JNK 

activation can explain the observed cell cycle arrest, we cannot rule out a 

contribution from DNA damage mediated cell cycle arrest pathways. ROS-

mediated DNA damage was not demonstrated in this present study but WFA has 

been previously shown to induce ROS-mediated DNA damage158. Additionally, 

IPA analysis of our microarray data revealed p53 was one of the upstream 

regulators activated by WFA (P = 7.58E-22 at 6 h and P = 1.81E-18 at 12 h). 

Apoptosis is a secondary response after DNA damage. Hence, we would infer a 

longer kinetic for the apoptosis response triggered by prolonged cell cycle arrest. 

This could explain why the substantial inhibition of caspase-3 activation by WFA 

observed in JNK-IN-8 pretreated cells at 6 and 12 h did not strictly correlate with 
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the frequency of annexin-V positive cells at 24 h. Inhibition of JNK would not 

interfere with a ROS-induced DNA damage mediated apoptosis response. 

6b) Oxidative stress is a feasible biochemical alteration that can be exploited for 

selective treatment in MDS 

A major goal in cancer therapy is to develop drugs that would more 

selectively target malignant cells with minimum toxicity to normal cells. Toxic side 

effects routinely observed with most established chemotherapy drugs could be 

ameliorated by therapeutic selectivity36. The idea of exploiting cancer redox 

biology as a basis for therapeutic selectivity is not a new concept159. Most cancer 

cells have increased levels of ROS compared to their normal 

counterparts117,160,161. Increased ROS levels have been associated with 

oncogenic transformation, tumor progression and poor prognosis161-164. Redox 

homeostasis is an essential delicate balance under normal physiological 

conditions as excess ROS can result in apoptotic cell death108. An antioxidant 

defense system has evolved to maintain ROS levels below the toxic threshold 

beyond which cell death is induced72. 

 It used to be a conundrum why the increased oxidative stress was 

insufficient to cause cell death in cancer cells. However, it is now appreciated 

that cancer cells adapt to this increased oxidative stress by upregulating their 

antioxidant capacity to keep them below the toxic threshold165-167. This adaptation 

suggests a delicate redox balance is also required for cancer cell function and 

tipping this balance may be a potential therapeutic strategy116,165-167. Cancer cells 
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are more dependent than normal cells on the antioxidant system which would 

make them more vulnerable to compounds that inhibit this system165,166. 

Likewise, increased oxidative stress could put cancer cells closer to the toxic 

threshold compared to their normal counterparts159. Therefore, a further increase 

in ROS is likely to push cancer cells but not normal cells beyond the toxic 

threshold159,165,166. Ovarian cancer, breast cancer and AML are examples of 

cancer systems in which the potential of ROS inducing agents in cancer therapy 

has been demonstrated65,124,161. The implication of increased oxidative stress in 

the development and prognosis of MDS118 is an indication that ROS inducing 

agents have a selective therapeutic potential in MDS.  

6c) Model of cytotoxicity mechanisms of WFA in MDS 

Based on our findings, we propose a model in which WFA increases ROS 

in MDS-L cells to induce cell death primarily by apoptosis (Figure 6.1). This is 

contrary to the report that WFA primarily induces autophagic cell death of MDS-L 

cells55. However, it is noteworthy that the maximum drug concentration used in 

that study was 1 µM compared to 10 µM for this study. The difference in outcome 

with different WFA concentrations on the same cell line further supports the idea 

of a ROS threshold requirement for ROS-induced apoptotic cell death. 

Nevertheless, this possibility would have to be demonstrated experimentally for a 

definitive conclusion. The mechanisms by which ROS inducing agents increase 

ROS are unclear124. The mitochondrion is thought to be the main source of 

intracellular ROS in eukaryotic cells168. Whether this is the site of ROS 

production in MDS-L cells treated with WFA was not determined in this study. 
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However, WFA has been shown to inhibit complex III activity within the 

mitochondrial respiratory chain and this inhibition induces ROS production by 

complex I and complex II49,169. This increase in ROS by WFA in MDS-L cells 

results in the activation of ASK1 and subsequent activation of JNK via MKK7. 

Activated JNK also allows for AP-1 dependent transcription of pro-apoptotic 

proteins like BIM which promotes apoptosis by decreasing MMP. WFA-induced 

ROS also mediates cell cycle arrest which could further promote apoptosis. All 

pathways mediating apoptosis in MDS-L cells by WFA are ROS-dependent 

because pre-incubation of cells with NAC prior to WFA treatment completely 

prevented apoptosis. ROS and JNK have been shown, independently, to be 

involved in the mechanisms mediating WFA cytotoxicity in other cancer cells44. 

Our studies established a link between WFA-induced ROS, JNK/AP-1 signaling 

and apoptosis in MDS-L cells. In addition, we demonstrated that increase in ROS 

production is central to the cytotoxicity of WFA in MDS-L cells. Consequently, we 

suggest redox biology could be exploited as the basis for therapeutic selectivity 

in MDS.   

6d) Conclusion 

The study presented here demonstrates that the plant derived compound 

WFA is a potential therapeutic agent for MDS treatment. Our results show that 

increase in ROS is central to the apoptosis of MDS-L cells treated with WFA. We 

identify redox biology as a potential avenue by which therapeutic selectivity can 

be achieved in MDS. However, several unknowns still remain to be addressed: 
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1. A pharmacokinetic evaluation of WFA in this study model is required to 

determine the optimal dose in vivo. It has been reported that the plasma 

concentration of WFA from a single IP injection of 4mg/kg in female BALB/c mice 

is 1.8μM with a half-life of about 1.3 h170. Nonetheless, we recognize that this 

was a single study and mouse strain and the purity of WFA used would impact 

the pharmacokinetic profile. 

2. Detailed analyses of the toxicity profile of WFA are also of utmost importance. 

We monitored toxicity in this study by weight loss and found WFA to be generally 

safe (Figure 3.7E). The GI tract is usually highly susceptible to 

chemotherapeutics because the cells in the epithelium are highly proliferative. In 

another study investigating the effects of WFA in a mouse lymphoma model, we 

found that WFA had no apparent effect on the GI tract (data not shown). Another 

important target of most chemotherapeutics is the bone marrow as bone marrow 

suppression is a major side effect of most cancer therapies138. WFA did not 

suppress endogenous stem cells in this study (Figure 3.8). In fact, it rather 

stimulated an expansion of the stem cell population (Figure 3.8). However, the 

effect of WFA on the clonogenenic and repopulation potential of these stem cells 

has to be evaluated. 

3. It is clear that WFA induces ROS in MDS-L cells but the mechanism and 

species of ROS responsible for selective WFA toxicity remain unclear. The fact 

that catalase has no effect on WFA-induced ROS (data not shown) suggests 

H2O2 is not the ROS species of interest. This information will be useful to improve 

the efficiency of WFA and/or identify more efficient ROS-inducing agents. 
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4. Because the ROS threshold concept likely underlies the therapeutic selectivity 

of WFA in MDS, it is imperative to determine the optimal dose at which maximum 

killing of malignant cells occurs without pushing normal cells beyond the toxic 

threshold. 

5. Efficacy of other ROS-inducing agents in MDS has to be evaluated. 

Compounds such as  4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione (TDZD-

8), 3-deazaneplanocin A (DZNep), and dimethylaminoparthenolide (DMAPT), 

which have already been demonstrated to cause killing of AML cells by inducing 

ROS124 would be good candidates. 

6. Combinatorial effects of WFA and current FDA approved therapies have to be 

evaluated. Although combining WFA and lenalidomide was neither synergistic 

nor additive in vitro, the in vivo outcome should be investigated. This is especially 

so because lenalidomide, azacitidine and decitabine all induce an erythroid 

response which cannot be evaluated in vitro. 

7. We observed that the efficiency of engraftment of MDS-L cells in NSGS mice 

was highly variable. Therefore, it will be important to explore methods of reducing 

this variability such as intrafemoral injection of cells into mice and co-injection of 

MDS-L cells with human derived stromal cell lines.  
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Figure 6.1: Cytototoxicity mechanisms of WFA in MDS 

WFA increases ROS in the cell which acitvates JNK/AP-1 signaling. Increased 

ROS and expression of AP-1 target genes lead to cell cycle arrest and apoptosis. 
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APPENDIX B: 

COMPOSITION OF POLYACRYLAMIDE GELS 

STACKING GEL (5%) 
STOCK SOLUTION VOLUME (ml) 

H2O 3 
1M Tris pH 6.8 1.25 

40% Acrylamide 0.63 

10% SDS 0.05 

10% APS 0.05 

TEMED 0.0005 

Total volume 4.985 
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RESLOVING GEL 

STOCK SOLUTION VOLUME (ml) 

 9% 10% 12% 

H2O 10.2 9.8 8.8 

1M Tris pH 6.8 5 5 5 

40% Acrylamide 4.5 5 6 

10% SDS 0.2 0.2 0.2 

10% APS 0.2 0.2 0.2 

TEMED 0.02 0.02 0.02 

Total volume 20.12 20.12 20.12 
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APPENDIX C: 

LIST OF ABBREVIATIONS 

2-ME - 2-Mercaptoethanol         

AML - Acute myeloid leukemia         

AP-1 - Activator protein-1 

APS - Ammonium persulfate         

ASK1 - Apoptosis signal-regulating kinase 1       

ATF2 - Activating transcription factor 2        

BAG3 - Bcl2-associated athanogene 3        

BCA - Bicinchoninic Acid          

Carboxy-DCFDA - 5-(and-6)-Carboxy-2',7'-Dichlorofluorescein Diacetate    

Carboxy-H2DCFDA - 6-Carboxy-2',7'-Dichlorodihydrofluorescein Diacetate 

CAT - Catalase         

Cdc25 - Cell division cycle 25         

Cdks - Cyclin dependent kinases        

CK1α - casein kinase 1A1          

del 5q - Deletion in chormosome 5q        

DLAR - Division of Laboratory Animal Resources       

DMAPT - Dimethylaminoparthenolide         

DMSO - Dimethyl sulfoxide         

DNMT-1 - DNA methyltransferase-1        

DZNep - 3-deazaneplanocin A          

EDTA - Ethylenediaminetetraacetic acid      
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ER - Endoplasmic reticulum         

FACS - Fluorescence activated cell sorter        

Fas-L - Fas-ligand         

FBS - Fetal bovine serum         

FCCP - Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone   

FDR - False discovery rate          

FWER - Family-wise error rate          

GPx - Glutathione peroxidase         

GSH - Glutathione         

GSSG - Glutathione disulfide         

H2O2 - Hydrogen peroxide         

HSCT - Hematopoietic stem cell transplant      

Hsp90 - Heat shock protein 90         

IACUC - Institutional Animal Care and Use Committee      

IPA - Ingenuity Pathway Analysis          

IR - Irradiation         

JNKs - c-Jun N-terminal kinases         

LENA - Lenalidomide         

LSK - Lineage negative cells double positive for both Sca-1 and c-KIT   

MAPK - Mitogen-activated protein kinase       

MDS - Myelodysplastic syndromes       

MMP - Mitochondrial membrane potential     

MSigDB - Molecular Signature Database   



www.manaraa.com

143 
 

MTT - 4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide   

NAC - N-acetyl-cysteine         

NADPH-oxidase - Nicotinamide adenine dinuleotide phosphate-oxidase  

NCC - N-terminal coiled coil         

NCI - National Cancer Institute         

NSG - NOD/SCID-IL2Rγ         

NSGS - NSG-hSCF/hGM-CSF/hIL3        

OSU CCC - Ohio State University Comprehensive Cancer Center    

PBS - Phosphate buffered saline          

PI - Propidium Iodide         

PMA - Phorbol 12-myristate-13-acetate         

qRT-PCR - Quantitative Real-Time PCR        

RGS-2 - Regulator of G-protein signaling 2        

ROS - Reactive oxygen species         

Sca-1 - Stem cell antigen         

SDS - Sodium dodecyl sulfate          

SOD - Superoxide dismutase         

SP-1 - Specificity protein 1         

TBST - Tris buffered saline Tween 20        

TDZD-8 - 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione     

t-MDS - Therapy-related myelodysplastic syndrome      

Trx - Thioredoxin         

WFA - Withaferin A   
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WHO - World Health Organization        
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